Bootstrap for multivariate time series and gravitational wave detection

S.N. Lahiri

Department of Mathematics \& Statistics
Washington University in St. Louis
s.lahiri@wustl.edu

GWB

- As described by general relativity, GW are freely propagating wave solutions to Einstein's equation, or "ripples" in the space-time metric.

- GW are expected to be generated by nearly any configuration of accelerating mass.
- However, due to the weakness of gravity, large masses/high accelerations (e.g., binary systems of neutron stars) are required to radiate significant GW.

GWB

- GWs can be indirectly inferred using precise measurements of timings of radio pulses from spinning, magnetized neutron stars (pulsars).
- The pulse times of arrival can be analyzed via models incorporating the GW component.
- One operational model for the observed pulsar time of arrivals (TOAs) can be written as

$$
\begin{equation*}
\tau=\tau^{\mathrm{TM}}+\tau^{\mathrm{DM}}+\tau^{\mathrm{GW}}+\tau^{\text {other }} \tag{0.1}
\end{equation*}
$$

where

- τ^{TM} : Physical model for TOAs taking into account spin period, proper motion, binary orbital dynamics, etc.
- τ^{DM} : Model for time-varying dispersion measure variations.
- τ^{GW} : Model for any GWs. This includes stochastic sources that have a unique correlation pattern across multiple pulsars, etc!

GWB

- Through some clever manipulation \& approximations (cf. Demorest et al. (2007, 2012)), this leads to the following model for the pre-fit residuals for a single pulsar:

$$
\mathbf{Y}=\mathbf{A} \beta+\boldsymbol{\epsilon}
$$

- Parameters β are estimated by WLS/GLS, giving

$$
\widehat{\beta}=\left(\mathbf{A}^{\prime} \mathbf{W} \mathbf{A}\right)^{-1} \mathbf{A}^{\prime} \mathbf{W} \mathbf{Y}
$$

where \mathbf{W} is (often) a diagonal matrix with inverse variances at each epoch (but can be more general).

GWB

- The post-fit residuals are given by $\mathbf{R Y}$, where \mathbf{R} is the projection operator:

$$
\mathbf{R}=\mathbf{I}-\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{W A}\right)^{-1} \mathbf{A}^{\prime} \mathbf{W} .
$$

- It is easy to check that \mathbf{R} is idempotent (and singular).
- Further,

$$
\mathbf{R Y}=\mathbf{R} \mathbf{A} \beta+\mathbf{R} \boldsymbol{\epsilon}=\mathbf{0}+\mathbf{R} \boldsymbol{\epsilon} .
$$

- Thus, we can use the post-fit residuals to investigate the covariance structure of $\boldsymbol{\epsilon}$ that contains information about the GWB !!

GWB

- We write

$$
\boldsymbol{\epsilon}=\boldsymbol{\epsilon}^{\mathrm{gw}}+\boldsymbol{\epsilon}^{\mathrm{other}}
$$

where ϵ^{gW} denotes the part of the noise due to GWB.

- Under an isotropic power law spectrum assumption, the GWB covariances are of the form:

$$
\left(\left(\mathbf{C}^{\mathrm{gw}}\right)\right)_{i j}=A_{1}^{2} C^{\mathrm{gw}}\left(t_{i}-t_{j}\right)
$$

where

- $C^{\mathrm{gw}}(\cdot)$ is the covariance function corresponding to the spectrum and
- A_{1} is the unknown GW spectrum amplitude at the reference frequency $f_{0}=1 \mathrm{yr}^{-1}$ - the parameter of interest!!!

GWB

- The presence of GW component make the residual series of different pulsars correlated!!
- For a pair of pulsars (a, b), the noise variables $\boldsymbol{\epsilon}_{a}$ and $\boldsymbol{\epsilon}_{b}$ can be written as

$$
\boldsymbol{\epsilon}_{a}=\boldsymbol{\epsilon}_{a}^{\mathrm{gW}}+\boldsymbol{\epsilon}_{a}^{\text {other }}, \quad \boldsymbol{\epsilon}_{b}=\boldsymbol{\epsilon}_{b}^{\mathrm{gW}}+\boldsymbol{\epsilon}_{b}^{\text {other }}
$$

where $\epsilon_{a}^{\text {gw }}$ and $\epsilon_{b}^{\text {gw }}$ are correlated, but $\epsilon_{a}^{\text {other }}$ and $\boldsymbol{\epsilon}_{b}^{\text {other }}$ are NOT!

The GW component in residuals

- The covariance between the noise variables ϵ_{a} and ϵ_{b} for a pair of pulsars (a, b) is given by

$$
\left(\left(\mathbf{C}_{a, b}\right)\right)_{i j}=A_{1}^{2} C^{\mathrm{gw}}\left(t_{i}-t_{j}\right) \zeta\left(\theta_{a b}\right)
$$

where

- $\theta_{a b}=$ the angular separation between pulsars a and b and
- $\zeta(\cdot)$ is the Hellings-Downs function !
- Thus, the cross-covariance matrix between $\boldsymbol{\epsilon}_{a}$ and $\boldsymbol{\epsilon}_{b}$ is determined by the GW power spectrum.
- Further, in $\mathbf{C}_{a, b}$, the ONLY unknown parameter is A_{1}^{2}.

The GW component in residuals

Q: How do we estimate A_{1} ?

Cadence of TOAs/ residuals

- Here is a plot of the residuals for different pulars showing their cadence (cf. Demorest et al. (2012)):
(1643-1204

Optimal Statistic

Note the following features:

- The time points are irregularly spaced!
- The number of observations can be/are different for any two distinct pulsars!
- The coverage is NOT uniform and there are gaps appearing during 2007 in most of the series!
- The densities and spans of different series can be very different!
- There is heteroskedsticity (cf. size of the bars) !!

Optimal Statistic :

- Demorest et al. (2012) defined the following cross-correlation statistic (cf. eqn (9), p.13):

$$
\rho_{a b}=\frac{\sum_{i j k l} r_{i}^{(a)}\left(C^{t o t}(a)\right)_{i j}^{-} C_{j k}(a, b)\left(C^{t o t(b)}\right)_{k l}^{-} r_{l}^{(b)}}{\sum_{i j k l}\left(C^{t o t(a)}\right)_{i j}^{-} C_{j k}(a, b)\left(C^{t o t}(b)\right)_{k l}^{-} C_{i l}(a, b)}
$$

where

- $i, j \in\left\{1, \ldots, N_{a}\right\}$ and $k, l \in\left\{1, \ldots, N_{b}\right\}$, with N_{a} denoting the number of TOAs for pulsar a, etc.
- $r_{i}^{(a)}$ and $r_{l}^{(b)}$ are the post-fit timing residuals for pulsars a and b, respectively.
- $\mathbf{C}^{t o t(a)}$ is the (estimated) covariance matrix of the post-fit residuals for pulsar a, and $\left(\mathbf{C}^{t o t(a)}\right)^{-}$is its generalized inverse!
- $C_{i l}(a, b)$ is the (i, l) element of $R_{a}\left[\mathbf{C}_{a, b}\right] R_{b}^{\prime}$.

GWB

- It can be shown that for all a, b,

$$
E \rho_{a b}=A_{1}^{2} \zeta\left(\theta_{a b}\right)
$$

- Given a set of pulsars $\{1, \ldots, m\}$, we can set up the regression model:

$$
\rho_{a b}=A_{1}^{2} \zeta\left(\theta_{a b}\right)+\epsilon_{a b}
$$

for pairs $(a, b) \in \Gamma$, where $\Gamma=\{(a, b): 1 \leq a<b \leq m\}$.

- This leads to an estimator of A_{1}^{2} of the form:

$$
\hat{A}_{1}^{2}=\frac{\sum_{(a, b)} \zeta\left(\theta_{a b}\right) \rho_{a b}}{\sum_{(a, b)} \zeta\left(\theta_{a b}\right)^{2}}
$$

Optimal Statistic :

Q: How do we approximate the distribution of \hat{A}_{1}^{2} ?

Bootstrap

- We can use the Bootstrap to approximate the distribution of \hat{A}_{1}^{2}.
- But what form of Bootstrap is appropriate?
- Sampling with replacement / IID Bootstrap ?
- Block Bootstrap ?

Construction of the Blocks for time series

- $M=1$ gives the maximum overlapping version
- $M>1$ can be used to reduce computational burden

Issues with the Block Bootstrap

- While this will work with a single time series, it may not be effective under the present scenario:
- the number of pulsars $\approx 37+$
- and the sample size is only around $500+$.
- Thus, - curse of dimensionality will kick in!!
- Time-domain Block Bootstrap does not handle Red Noise very well (cf. Lahiri (1993)).
- There are also issues with irregularly spaced time-points! (cf. Lahiri and Zhu (2006)).

A new Bootstrap method

- Recall that

$$
\rho_{a b}=\frac{\sum_{i j k l} r_{i}^{(a)}\left(C^{t o t}(a)\right.}{)_{i j}^{-} C_{j k}(a, b)\left(C^{t o t}(b)\right)_{k l}^{-} r_{l}^{(b)}} \underset{\sum_{i j k l}\left(C^{t o t(a)}\right)_{i j}^{-} C_{j k}(a, b)\left(C^{t o t}(b)\right)_{k l}^{-} \tilde{C}_{i l}(a, b)}{.}
$$

- Define

$$
\mathbf{Z}^{(a)} \equiv\left(Z_{1}^{(a)}, \ldots, Z_{N_{a}}^{(a)}\right)^{\prime}=\left(\mathbf{C}^{\operatorname{tot}(a)}\right)^{-1 / 2} \mathbf{r}^{(\mathbf{a})}
$$

the set of pre-whitened residuals for pulsar a.

- Note that $\rho_{a b}$ can be written as

$$
\rho_{a b}=\sum_{i=1}^{N_{a}} \sum_{l=1}^{N_{b}} w_{a b}(i, l) Z_{i}^{(a)} Z_{i}^{(b)}
$$

for some weights $w_{a b}(i, l)$.

A new Bootstrap method

- Thus, to define the Bootstrap version of

$$
\hat{A}_{1}^{2}=\frac{\sum_{(a, b)} \zeta\left(\theta_{a b}\right) \rho_{a b}}{\sum_{(a, b)} \zeta\left(\theta_{a b}\right)^{2}}=\sum_{(a, b)} \sum_{i=1}^{N_{a}} \sum_{l=1}^{N_{b}} \tilde{w}_{a b}(i, l) Z_{i}^{(a)} Z_{i}^{(b)}
$$

it is enough to be able to generate Bootstrap versions of $\mathbf{Z}^{(a)}$ for all a.

- Note that for each a, the variables $Z_{1}^{(a)}, \ldots, Z_{N_{a}}^{(a)}$ are approximately iid.
- So, we can resample with replacement to generate the (pre-)Bootstrap sample

$$
Z_{1}^{\circ(a)}, \ldots, Z_{N_{a}}^{\circ(a)}
$$

A new Bootstrap method

- Note that this direct resampling only captures the marginal behavior of each set of residuals.
- It is important to also capture their interactions (correlations)!
- Thus, the Bootstrap version of $\left\{\mathbf{Z}^{(a)}: a=1, \ldots, m\right\}$ is defined by

$$
\left(\begin{array}{c}
\mathbf{Z}^{*(a)} \\
\cdots \\
\mathbf{Z}^{*(m)}
\end{array}\right)=\Sigma^{1 / 2}\left(\begin{array}{c}
\mathbf{Z}^{\circ(a)} \\
\cdots \\
\mathbf{Z}^{\circ(m)}
\end{array}\right)
$$

where Σ is an $N \times N$ matrix (with $N=N_{1}+\ldots+N_{m}$) consisting of $m \times m$ block matrices with (a, b) th block :

$$
\left[\mathbf{C}^{\operatorname{tot}(a)}\right]^{-1 / 2} \mathbf{C}_{a, b}\left[\mathbf{C}^{\operatorname{tot}(b)}\right]^{-1 / 2}, a \neq b .
$$

A new Bootstrap method

- Now define

$$
\left[A_{1}^{*}\right]^{2}=\sum_{(a, b)} \sum_{i=1}^{N_{a}} \sum_{l=1}^{N_{b}} \tilde{w}_{a b}(i, l) Z_{i}^{*(a)} Z_{i}^{*(b)}
$$

- We can use the Bootstrap distribution of $\left[A_{1}^{*}\right]^{2}$ to approximate the distribution of \hat{A}_{1}^{2}.
- We can use the Monte-Carlo based Bootsrrap quantiles of $\left[A_{1}^{*}\right]^{2}$ to construct CIs for A_{1}^{2}.
- This, in turn, can be used for testing $H_{0}: A_{1}=0$, etc.

The END!!!

Thank you !!

