Data integration using constrained Gaussian process models with applications to nuclear physics

> Shuang Zhou Arizona State University (Joint work with P. Ray, A. Bhattacharya and D. Pati)

ISNET-9, Dept. of Physics, Washington University in St. Louis May 25, 2023

Outline of the talk

Motivating data: The proton radius puzzle

Model: Hierarchical models for grouped responses; Incorporate shape constraints using Gaussian processes with a basis expansion

Motivating data

Motivation: Proton radius puzzle

RP et al., Nature 466, 213 (2010); Science 339, 417 (2013); ARNPS 63, 175 (2013).

- Old results from the electron scattering experiments have determined the proton radius to be ~ 0.875 fm
- In 2010 high precision results from Muonic Lamb shift expt. estimated the proton radius as ~ 0.844 fm; supported by ~ 0.831 fm (*Nature*, 2019), ~ 0.845 fm (*Phys Rev C*, 2019) ~ 0.848 fm (*Science*, 2020)

Electron scattering experiment

Electron scattering experiment

- Proton form factor G_E curve as a function of potential Q^2 is difficult to obtain analytically
- The proton radius r_p is related to the derivative of the G_E curve at $Q^2 = 0$,

$$r_p := \sqrt{-6 \frac{dG_E(Q^2)}{dQ^2}|_{Q^2=0}}$$

Scattering experiment: noisy data obtained for G_E and Q²

- Impossible to measure G_E for $Q^2 \approx 0$
- Puzzle lies in the extraction of the proton radius from the scattering data

More about the elec. scatt. experiment

The electric form factor G_E as a function of potential Q^2 is "continuously monotone" with a fixed intercept

 $(-1)^n G_E^{(n)}(Q^2) > 0$ and $G_E(Q^2 = 0) = 1$

• Data collected from T = 34 from difference sources (with known lables)

Multiplicative uncertainties in measurements of form factor:

$$G_{E_t}^{obs} = n_{0t} G_{E_t}, \quad t = 1, \dots T$$

where normalization parameters $\{n_0\}$ are unknown (close to 1), varying across difference sources

Existing methods and issues

 Existing methods: Parametric models such as monopole, dipole, polynomial (Robust OLS)

Results can be sensitive to the particular parametric model used

The error structure is still less understood

New method: Flexible Bayesian semi-parametric model to incorporate the constraints and to detect the normalization parameters

Modeling with a basis representation

Model framework

► Grouped observation pairs {y_i, x_{ii}} from the source t(t = 1,...,T); y_{ii} observed G_E; x_{ii} scaled Q², i = 1,..., n_t

Model:

$$y_{ti} = (1 + \eta_t)f(x_{ti}) + \epsilon_{ti}, \quad \epsilon_{ti} \stackrel{i.i.d.}{\sim} N(0, \sigma^2), \quad f \in \mathcal{C}_f.$$

- $\{\eta_t\}$ characterize unknown normalization factors
- The constraint set

 $\mathcal{C}_{f} = \{f: [0,1] \to \mathbb{R}: f(0) = 1, f'(x) < 0, f''(x) > 0, \forall x\},\$

Our goal: Characterize the uncertainty in estimating the radius

A basis expansion approach

For a twice continuously differentiable function

$$f(x) = f(0) + xf'(0) + \int_0^x \int_0^t f''(s) ds dt$$

Given N equal-spaced knots {u_j} and basis h_j(x) (Maatouk & Bay, 2016),

$$f''(x) \approx \sum_{j=0}^{N} f''(u_j) h_j(x), \quad \phi_j(x) = \int_0^x \int_0^t h_j(s) ds dt$$

Illustration

Figure: (a) Functions $h_0(x)$, $\psi_0(x)$ and $\phi_0(x)$; (b) Approximations (black) of the dipole function (Red) using the basis functions $h_j(x)$ on 11 gridpoints between 0 and 1 (black dots). (c)-(d) Approximation (black) of the same dipole function (red) using the basis functions ϕ_j .

A basis expansion approach

Function approximation

$$f(x) \approx f(0) + xf'(0) + \sum_{j=0}^{N} f''(u_j) \phi_j(x)$$

Re-parameterizing,

$$f_{\theta}(x) = \theta_1 + \theta_2 x + \sum_{j=0}^{N} \theta_{j+3} \phi_j(x)$$

with unknown parameter $\theta = \{\theta_1, \ldots, \theta_{N+3}\}.$

Transferring the constraints

Find equivalent constraint set on coefficients θ :

Lemma

 $f \in \mathcal{C}_{f}$ if and only if $\theta \in \mathcal{C}_{\Theta}$, where

$$\mathcal{C}_{\Theta} = \left\{ \begin{array}{ll} \theta_1 = 1, \quad \theta_2 + \sum_{j=0}^N \theta_{j+3} c_j < 0, \\ \\ \theta_{j+3} > 0, \quad j = 0, \dots, N. \end{array} \right\}$$

where $c_j = \int_0^1 h_j(x) dx$ for j = 0, ..., N.

Finite numbers of linear constraints on unknown coefficients. Easy to implement!

Prior choice and posterior inference

Prior choice

A natural prior choice is a Gaussian process (GP) prior, $f'' \sim GP(0, \tau^2 K)$, then

 $\theta_{[3:(N+3)]} = [f''(u_0), \ldots, f''(u_N)]^{\mathrm{T}} \sim \mathcal{N}(0, \tau^2 \Gamma)$

• Univariate normal prior $\theta_2 \sim \mathcal{N}(\mu_0, \tau^2)$

Set the prior distribution on θ as a truncated MVN

 $\theta_2, \theta_{[3:(N+3)]} \mid \tau^2 \quad \sim \quad \Pi\left(\theta_2\right) \, \Pi(\theta_{[3:(N+3)]}) \, \mathbb{1}_{\mathcal{C}_{\Theta}}\left(\theta_2, \theta_{[3:(N+3)]}\right)$

• Centered normal prior on
$$\eta_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\eta}^2)$$

Hyperparameter choices

• K: stationary Matérn kernel with smoothness parameter $\nu = 0.5$

• Inverse-gamma priors on τ^2, σ_η^2

• Gamma prior on σ^2

Consider various choices of {N, ℓ} for model comparison (I = #(N) × #(ℓ))

Posterior inference

- Posterior computation: MCMC algorithm using Gibbs sampling (Elliptical slice sampling to sample from the truncated posterior)
- ► Model averaging according to model comparison: Use Watanabe-Akaike Information Criterion values WAIC_i under different combinations of {N, ℓ}

Averaging the estimates with the weights

$$w_i = \frac{\exp(-\mathsf{WAIC}_i/2)}{\sum_{j=1}^{I} \exp(-\mathsf{WAIC}_j/2)}, \quad i = 1, \dots, I.$$

The final estimate of the proton radius

$$ilde{r}_p = \sum_{i=1}^{I} w_i \, \hat{r}_{pi}, \quad \hat{r}_{pi} = S^{-1} \sum_{s=1}^{S} \sqrt{-6 \, heta_2^{(s)} / Q_{\max}^2}$$

Simulation results

Simulation: Data generation

• Set the true radius $r_p = 0.85$ fm

Synthetic G_E values y_{it}^* from the data-generator (Yan et al., 2018) using Q^2 s in the Mainz data

Generate normalization parameters

 $\eta_t^* \stackrel{i.i.d.}{\sim} \mathsf{Unif}\left[1 - \delta_0, 1 + \delta_0\right]$

• Additive normal errors $\epsilon_{it} \stackrel{i.i.d.}{\sim} N(0, \sigma_0^2)$

Observed responses:

 $y_{ti} = (1 + \eta_t^*) y_{it}^* + \epsilon_{it}, \quad i = 1, \dots, n_t, \quad t = 1, \dots, T.$

Data separation

 Q_{low}^2 Q^2_{upp} n_t 106 0.005 0.0168 Group 1 Group 2 41 0.0132 0.0249 102 0.0147 0.086 Group 3 Group 4 19 0.0249 0.0386 Group 5 38 0.055 0.0967 Group 6 17 0.0967 0.109 Group 7 104 0.0145 0.0638 Group 8 38 0.0561 0.1817 Group 9 40 0.0626 0.1882 62 Group 10 0.1473 0.2783 77 Group 11 0.0199 0.0747 Group 12 52 0.0747 0.1535 Group 13 42 0.0765 0.3478 Group 14 17 0.0769 0.1112 . . .

Table: Data separation

Error set-ups

Case I: Large multiplicative errors and small additive errors

Fix $\sigma_0 = 0.001$ and set $\delta_0 \in \{0.001, 0.003, 0.005\}$

Case II: Small multiplicative error and large additive error

Fix $\sigma_0 = 0.001$ and set $\delta_0 \in \{0.0001, 0.0005, 0.001\}$

In cases I,II:

- Generate response observations in two scenarios, by taking the first 14 groups (low regime) and the first 28 groups (high regime) of data
- Replicate 50 data sets and fit the model

Results (Case I, low regime)

Table: Posterior (mean) estimates and 95% credible intervals (CI) of radius of the proton over 50 replicated data sets in low regime

δ_0	0.001	0.003	0.005
\hat{r}_p	0.848	0.849	0.847
r _{CI}	(0.846,0.851)	(0.842,0.859)	(0.837,0.857)
\hat{r}_p	0.85	0.850	0.855
r _{CI}	(0.849,0.852)	(0.842,0.859)	(0.842, 0.869)
\hat{r}_p	0.850	0.853	0.851
r _{CI}	(0.843,0.855)	(0.842,0.871)	(0.844,0.858)
\hat{r}_p	0.849	0.851	0.851
r _{CI}	(0.848,0.851)	(0.842,0.862)	(0.844,0.862)
	$\begin{array}{c} \delta_0 \\ \hat{r}_p \\ r_{CI} \end{array}$	$\begin{array}{c c} \hline \delta_0 & 0.001 \\ \hline \hat{r}_p & 0.848 \\ r_{\rm Cl} & (0.846, 0.851) \\ \hline \hat{r}_p & 0.85 \\ r_{\rm Cl} & (0.849, 0.852) \\ \hline \hat{r}_p & 0.850 \\ r_{\rm Cl} & (0.843, 0.855) \\ \hline \hat{r}_p & 0.849 \\ r_{\rm Cl} & (0.848, 0.851) \end{array}$	$\begin{array}{c cccc} \hline \delta_0 & 0.001 & 0.003 \\ \hline \hat{r}_p & 0.848 & 0.849 \\ r_{\rm Cl} & (0.846, 0.851) & (0.842, 0.859) \\ \hline \hat{r}_p & 0.85 & 0.850 \\ r_{\rm Cl} & (0.849, 0.852) & (0.842, 0.859) \\ \hline \hat{r}_p & 0.850 & 0.853 \\ r_{\rm Cl} & (0.843, 0.855) & (0.842, 0.871) \\ \hline \hat{r}_p & 0.849 & 0.851 \\ r_{\rm Cl} & (0.848, 0.851) & (0.842, 0.862) \\ \end{array}$

Results (Case I, high regime)

Table: Posterior (mean) estimates and 95% credible intervals (CI) of radius of proton over 50 replicated data sets

	δ_0	0.001	0.003	0.005
N=25	\hat{r}_p	0.848	0.847	0.845
	r _{CI}	(0.847,0.850)	(0.844,0.849)	(0.837,0.852)
N=50	\hat{r}_p	0.85	0.850	0.847
	r _{CI}	(0.848,851)	(0.846,0.853)	(0.840,0.853)
N=100	\hat{r}_p	0.85	0.845	0.847
	r _{CI}	(0.847,0.852)	(0.842,0.850)	(0.840,0.853)
WAIC-wt	\hat{r}_p	0.85	0.847	0.847
	r _{CI}	(0.848,0.852)	(0.843,0.851)	(0.839,0.853)

Results (Case II, low regime)

Table: Posterior (mean) estimates and 95% credible intervals (CI) of radius of proton over 50 replicated data sets

	δ_0	0.0001	0.0005	0.001
N=25	\hat{r}_p	0.848	0.849	0.848
	r _{CI}	(0.843,0.857)	(0.843,0.858)	(0.841,0.857)
N=50	\hat{r}_p	0.852	0.851	0.850
	r _{CI}	(0.843,0.860)	(0.845,0.858)	(0.845,0.858)
N=100	\hat{r}_p	0.849	0.855	0.855
	r _{CI}	(0.845,0.855)	(0.849,0.865)	(0.845,0.867)
MAIC wt	\hat{r}_p	0.850	0.852	0.851
	r _{CI}	(0.848,0.852)	(0.844,0.860)	(0.844,0.863)

Results (Case II, high regime)

Table: Posterior (mean) estimates and 95% credible intervals (CI) of radius of proton over 50 replicated data sets

	δ_0	0.0001	0.0005	0.001
N=25	\hat{r}_p	0.850	0.849	0.850
	r _{CI}	(0.847,0.853)	(0.846,0.851)	(0.846,0.855)
N=50	\hat{r}_p	0.851	0.849	0.849
	r _{CI}	(0.848,0.854)	(0.846,0.852)	(0.846,0.852)
N=100	\hat{r}_p	0.851	0.848	0.849
	r _{CI}	(0.847,0.854)	(0.844,0.851)	(0.843,0.854)
WAIC-wt	\hat{r}_p	0.851	0.849	0.849
	r _{CI}	(0.847,0.854)	(0.845,0.851)	(0.844,0.854)

WAIC-weighted estimate of η_t^* under $\delta_0 = 0.003$ in case I (low regime)

Figure: Box-plot of weighted estimates of normalization parameter per group. Black dots: true; black stars: outliers.

WAIC-weighted estimate of η_t^* under $\delta_0 = 0.005$ in case II (high regime)

Figure: Box-plot of weighted estimates of normalization parameter per group. Black dots: true; black stars: outliers.

Robustness check under $\delta_0 = 0.003$ (low regime)

Figure: Posterior estimate with 95% error bar under different data generators.

Real data analysis

Real data analysis (preliminary)

CODATA-2010: low regime. Model fit accommodated by recovered normalization parameters:

Estimation by groups

Q^2

Real data analysis (preliminary)

 Posterior density plot of the proton radius obtained by the hierarchical model (hGP) and constrained GP (treat normalization parameters universally)

Conclusion & Future work

Summary:

- Develop a hierarchical constrained GP model
- Provide reasonable estimates of the proton radius
- Recover the true normalization parameter of synthetic data To-dos:
 - Update the hyperparameters, make the model more robust
 - Model exploration with different choices of basis functions
 - Model under heteroscedastic cases
 - Extension to multidimensional models

Collaborators

- Palavi Ray (Eli Lily)
- Debdeep Pati (TAMU)
- Anirban Bhattacharya (TAMU)

References

- Revisiting the proton-radius problem using constrained Gaussian processes, *Physical Review C, 2019* (S. Zhou, P. Giulani, J. Piekarewicz, A. Bhattacharya, and D. Pati)
- Robust Gaussian process models for extrapolation of electronic proton radius (SZ, PR, DP, AB)
- Data integration with hierarchical Gaussian processes under constraints (SZ, AB, DP)
- Code: https://github.com/szh0u/Constrained-GP

Thank you!