Data integration using constrained Gaussian process models with applications to nuclear physics

Shuang Zhou
Arizona State University
(Joint work with P. Ray, A. Bhattacharya and D. Pati)

ISNET-9, Dept. of Physics, Washington University in St. Louis
May 25, 2023

Outline of the talk

- Motivating data: The proton radius puzzle
- Model: Hierarchical models for grouped responses; Incorporate shape constraints using Gaussian processes with a basis expansion
- Simulations \& real applications

Motivating data

Motivation: Proton radius puzzle

RP et al., Nature 466, 213 (2010); Science 339, 417 (2013); ARNPS 63, 175 (2013).

- Old results from the electron scattering experiments have determined the proton radius to be $\sim 0.875 \mathrm{fm}$
- In 2010 high precision results from Muonic Lamb shift expt. estimated the proton radius as $\sim 0.844 \mathrm{fm}$; supported by $\sim 0.831 \mathrm{fm}$ (Nature, 2019), ~ 0.845 fm (Phys Rev C, 2019) ~ 0.848 fm (Science, 2020)

Electron scattering experiment

Electron scattering experiment

- Proton form factor G_{E} curve as a function of potential Q^{2} is difficult to obtain analytically
- The proton radius r_{p} is related to the derivative of the G_{E} curve at $Q^{2}=0$,

$$
r_{p}:=\sqrt{-\left.6 \frac{d G_{E}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2}}=0}
$$

- Scattering experiment: noisy data obtained for G_{E} and Q^{2}

- Impossible to measure G_{E} for $Q^{2} \approx 0$
- Puzzle lies in the extraction of the proton radius from the scattering data

More about the elec. scatt. experiment

- The electric form factor G_{E} as a function of potential Q^{2} is "continuously monotone" with a fixed intercept

$$
(-1)^{n} G_{E}^{(n)}\left(Q^{2}\right)>0 \quad \text { and } \quad G_{E}\left(Q^{2}=0\right)=1
$$

- Data collected from $T=34$ from difference sources (with known lables)
- Multiplicative uncertainties in measurements of form factor:

$$
G_{E_{t}}^{o b s}=n_{0 t} G_{E_{t}}, \quad t=1, \ldots T
$$

where normalization parameters $\left\{n_{0}\right\}$ are unknown (close to 1), varying across difference sources

Existing methods and issues

- Existing methods: Parametric models such as monopole, dipole, polynomial (Robust OLS)
- Results can be sensitive to the particular parametric model used
- The error structure is still less understood
- New method: Flexible Bayesian semi-parametric model to incorporate the constraints and to detect the normalization parameters

Modeling with a basis representation

Model framework

- Grouped observation pairs $\left\{y_{t i}, x_{t i}\right\}$ from the source $t(t=1, \ldots, T) ; y_{t i}$ observed $G_{E} ; x_{t i}$ scaled $Q^{2}, i=1, \ldots, n_{t}$
- Model:

$$
y_{t i}=\left(1+\eta_{t}\right) f\left(x_{t i}\right)+\epsilon_{t i}, \quad \epsilon_{t i} \stackrel{i . i . d .}{\sim} N\left(0, \sigma^{2}\right), \quad f \in \mathcal{C}_{f} .
$$

- $\left\{\eta_{t}\right\}$ characterize unknown normalization factors
- The constraint set

$$
\mathcal{C}_{f}=\left\{f:[0,1] \rightarrow \mathbb{R}: f(0)=1, f^{\prime}(x)<0, f^{\prime \prime}(x)>0, \forall x\right\}
$$

- Our goal: Characterize the uncertainty in estimating the radius

A basis expansion approach

- For a twice continuously differentiable function

$$
f(x)=f(0)+x f^{\prime}(0)+\int_{0}^{x} \int_{0}^{t} f^{\prime \prime}(s) d s d t
$$

- Given N equal-spaced knots $\left\{u_{j}\right\}$ and basis $h_{j}(x)$ (Maatouk \& Bay, 2016),

$$
f^{\prime \prime}(x) \approx \sum_{j=0}^{N} f^{\prime \prime}\left(u_{j}\right) h_{j}(x), \quad \phi_{j}(x)=\int_{0}^{x} \int_{0}^{t} h_{j}(s) d s d t
$$

Illustration

Figure: (a) Functions $h_{0}(x), \psi_{0}(x)$ and $\phi_{0}(x)$; (b) Approximations (black) of the dipole function (Red) using the basis functions $h_{j}(x)$ on 11 gridpoints between 0 and 1 (black dots). (c)-(d) Approximation (black) of the same dipole function (red) using the basis functions ϕ_{j}.

A basis expansion approach

- Function approximation

$$
f(x) \approx f(0)+x f^{\prime}(0)+\sum_{j=0}^{N} f^{\prime \prime}\left(u_{j}\right) \phi_{j}(x)
$$

- Re-parameterizing,

$$
f_{\theta}(x)=\theta_{1}+\theta_{2} x+\sum_{j=0}^{N} \theta_{j+3} \phi_{j}(x)
$$

with unknown parameter $\theta=\left\{\theta_{1}, \ldots, \theta_{N+3}\right\}$.

Transferring the constraints

Find equivalent constraint set on coefficients θ :

Lemma

$f \in \mathcal{C}_{f}$ if and only if $\theta \in \mathcal{C}_{\Theta}$, where

$$
\begin{aligned}
& \mathcal{C}_{\Theta}= \begin{cases}\theta_{1}=1, & \theta_{2}+\sum_{j=0}^{N} \theta_{j+3} c_{j}<0,\end{cases} \\
& \left.\theta_{j+3}>0, \quad j=0, \ldots, N .\right\}
\end{aligned}
$$

where $c_{j}=\int_{0}^{1} h_{j}(x) d x$ for $j=0, \ldots, N$.

- Finite numbers of linear constraints on unknown coefficients. Easy to implement!

Prior choice and posterior inference

Prior choice

- A natural prior choice is a Gaussian process (GP) prior, $f^{\prime \prime} \sim \operatorname{GP}\left(0, \tau^{2} K\right)$, then

$$
\theta_{[3:(N+3)]}=\left[f^{\prime \prime}\left(u_{0}\right), \ldots, f^{\prime \prime}\left(u_{N}\right)\right]^{\mathrm{T}} \sim \mathcal{N}\left(0, \tau^{2} \Gamma\right)
$$

- Univariate normal prior $\theta_{2} \sim \mathcal{N}\left(\mu_{0}, \tau^{2}\right)$
- Set the prior distribution on θ as a truncated MVN

$$
\theta_{2}, \theta_{[3:(N+3)]} \mid \tau^{2} \sim \Pi\left(\theta_{2}\right) \Pi\left(\theta_{[3:(N+3)]}\right) \mathbb{1}_{\mathcal{C}_{\ominus}}\left(\theta_{2}, \theta_{[3:(N+3)]}\right)
$$

- Centered normal prior on $\eta_{t} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right)$

Hyperparameter choices

- K: stationary Matérn kernel with smoothness parameter $\nu=0.5$
- Inverse-gamma priors on $\tau^{2}, \sigma_{\eta}^{2}$
- Gamma prior on σ^{2}
- Consider various choices of $\{N, \ell\}$ for model comparison $(I=\#(N) \times \#(\ell))$

Posterior inference

- Posterior computation: MCMC algorithm using Gibbs sampling (Elliptical slice sampling to sample from the truncated posterior)
- Model averaging according to model comparison: Use Watanabe-Akaike Information Criterion values WAIC_{i} under different combinations of $\{N, \ell\}$
- Averaging the estimates with the weights

$$
w_{i}=\frac{\exp \left(-\mathrm{WAIC}_{i} / 2\right)}{\sum_{j=1}^{I} \exp \left(-\mathrm{WAIC}_{j} / 2\right)}, \quad i=1, \ldots, I
$$

- The final estimate of the proton radius

$$
\tilde{r}_{p}=\sum_{i=1}^{I} w_{i} \hat{r}_{p i}, \quad \hat{r}_{p i}=S^{-1} \sum_{s=1}^{S} \sqrt{-6 \theta_{2}^{(s)} / Q_{\max }^{2}}
$$

Simulation results

Simulation: Data generation

- Set the true radius $r_{p}=0.85 \mathrm{fm}$
- Synthetic G_{E} values $y_{i t}^{*}$ from the data-generator (Yan et al., 2018) using $Q^{2} s$ in the Mainz data
- Generate normalization parameters

$$
\eta_{t}^{* i . i . d .} \operatorname{Unif}\left[1-\delta_{0}, 1+\delta_{0}\right]
$$

- Additive normal errors $\epsilon_{i t} \stackrel{i . i . d .}{\sim} N\left(0, \sigma_{0}^{2}\right)$
- Observed responses:

$$
y_{t i}=\left(1+\eta_{t}^{*}\right) y_{i t}^{*}+\epsilon_{i t}, \quad i=1, \ldots, n_{t}, \quad t=1, \ldots, T .
$$

Data separation

Table: Data separation

	n_{t}	$Q_{\text {low }}^{2}$	$Q_{u p p}^{2}$
Group 1	106	0.005	0.0168
Group 2	41	0.0132	0.0249
Group 3	102	0.0147	0.086
Group 4	19	0.0249	0.0386
Group 5	38	0.055	0.0967
Group 6	17	0.0967	0.109
Group 7	104	0.0145	0.0638
Group 8	38	0.0561	0.1817
Group 9	40	0.0626	0.1882
Group 10	62	0.1473	0.2783
Group 11	77	0.0199	0.0747
Group 12	52	0.0747	0.1535
Group 13	42	0.0765	0.3478
Group 14	17	0.0769	0.1112
\vdots	\vdots	\vdots	\vdots

Error set-ups

Case I: Large multiplicative errors and small additive errors

- Fix $\sigma_{0}=0.001$ and set $\delta_{0} \in\{0.001,0.003,0.005\}$

Case II: Small multiplicative error and large additive error

- Fix $\sigma_{0}=0.001$ and set $\delta_{0} \in\{0.0001,0.0005,0.001\}$

In cases I,II:

- Generate response observations in two scenarios, by taking the first 14 groups (low regime) and the first 28 groups (high regime) of data
- Replicate 50 data sets and fit the model

Results (Case I, low regime)

Table: Posterior (mean) estimates and 95% credible intervals (CI) of radius of the proton over 50 replicated data sets in low regime

	δ_{0}	0.001	0.003	0.005
$\mathrm{~N}=25$	\hat{r}_{p}	0.848	0.849	0.847
	r_{Cl}	$(0.846,0.851)$	$(0.842,0.859)$	$(0.837,0.857)$
$\mathrm{N}=50$	\hat{r}_{p}	0.85	0.850	0.855
	r_{Cl}	$(0.849,0.852)$	$(0.842,0.859)$	$(0.842,0.869)$
$\mathrm{N}=100$	\hat{r}_{p}	0.850	0.853	0.851
	r_{Cl}	$(0.843,0.855)$	$(0.842,0.871)$	$(0.844,0.858)$
WAIC-wt	\hat{r}_{p}	0.849	0.851	0.851
	r_{Cl}	$(0.848,0.851)$	$(0.842,0.862)$	$(0.844,0.862)$

Results (Case I, high regime)

Table: Posterior (mean) estimates and 95% credible intervals (CI) of radius of proton over 50 replicated data sets

	δ_{0}	0.001	0.003	0.005
$\mathrm{~N}=25$	\hat{r}_{p}	0.848	0.847	0.845
	r_{Cl}	$(0.847,0.850)$	$(0.844,0.849)$	$(0.837,0.852)$
$\mathrm{N}=50$	\hat{r}_{p}	0.85	0.850	0.847
	r_{Cl}	$(0.848,851)$	$(0.846,0.853)$	$(0.840,0.853)$
$\mathrm{N}=100$	\hat{r}_{p}	0.85	0.845	0.847
	r_{Cl}	$(0.847,0.852)$	$(0.842,0.850)$	$(0.840,0.853)$
WAIC-wt	\hat{r}_{p}	0.85	0.847	0.847
	r_{Cl}	$(0.848,0.852)$	$(0.843,0.851)$	$(0.839,0.853)$

Results (Case II, low regime)

Table: Posterior (mean) estimates and 95% credible intervals (CI) of radius of proton over 50 replicated data sets

	δ_{0}	0.0001	0.0005	0.001
$\mathrm{~N}=25$	\hat{r}_{p}	0.848	0.849	0.848
	r_{Cl}	$(0.843,0.857)$	$(0.843,0.858)$	$(0.841,0.857)$
$\mathrm{N}=50$	\hat{r}_{p}	0.852	0.851	0.850
	r_{Cl}	$(0.843,0.860)$	$(0.845,0.858)$	$(0.845,0.858)$
$\mathrm{N}=100$	\hat{r}_{p}	0.849	0.855	0.855
	r_{Cl}	$(0.845,0.855)$	$(0.849,0.865)$	$(0.845,0.867)$
WAIC-wt	\hat{r}_{p}	0.850	0.852	0.851
	r_{Cl}	$(0.848,0.852)$	$(0.844,0.860)$	$(0.844,0.863)$

Results (Case II, high regime)

Table: Posterior (mean) estimates and 95% credible intervals (CI) of radius of proton over 50 replicated data sets

	δ_{0}	0.0001	0.0005	0.001
$\mathrm{~N}=25$	\hat{r}_{p}	0.850	0.849	0.850
	r_{Cl}	$(0.847,0.853)$	$(0.846,0.851)$	$(0.846,0.855)$
$\mathrm{N}=50$	\hat{r}_{p}	0.851	0.849	0.849
	r_{Cl}	$(0.848,0.854)$	$(0.846,0.852)$	$(0.846,0.852)$
$\mathrm{N}=100$	\hat{r}_{p}	0.851	0.848	0.849
	r_{Cl}	$(0.847,0.854)$	$(0.844,0.851)$	$(0.843,0.854)$
WAIC-wt	\hat{r}_{p}	0.851	0.849	0.849
	r_{Cl}	$(0.847,0.854)$	$(0.845,0.851)$	$(0.844,0.854)$

WAIC-weighted estimate of η_{t}^{*} under $\delta_{0}=0.003$ in case I (low regime)

Figure: Box-plot of weighted estimates of normalization parameter per group. Black dots: true; black stars: outliers.

WAIC-weighted estimate of η_{t}^{*} under $\delta_{0}=0.005$ in case II (high regime)

Figure: Box-plot of weighted estimates of normalization parameter per group. Black dots: true; black stars: outliers.

Robustness check under $\delta_{0}=0.003$ (low regime)

Figure: Posterior estimate with 95% error bar under different data generators.

Real data analysis

Real data analysis (preliminary)

- CODATA-2010: low regime. Model fit accommodated by recovered normalization parameters:

Estimation by groups

Real data analysis (preliminary)

- Posterior density plot of the proton radius obtained by the hierarchical model (hGP) and constrained GP (treat normalization parameters universally)

Conclusion \& Future work

Summary:

- Develop a hierarchical constrained GP model
- Provide reasonable estimates of the proton radius
- Recover the true normalization parameter of synthetic data To-dos:
- Update the hyperparameters, make the model more robust
- Model exploration with different choices of basis functions
- Model under heteroscedastic cases
- Extension to multidimensional models

Collaborators

- Palavi Ray (Eli Lily)
- Debdeep Pati (TAMU)
- Anirban Bhattacharya (TAMU)

References

- Revisiting the proton-radius problem using constrained Gaussian processes, Physical Review C, 2019 (S. Zhou, P. Giulani, J. Piekarewicz, A. Bhattacharya, and D. Pati)
- Robust Gaussian process models for extrapolation of electronic proton radius (SZ, PR, DP, AB)
- Data integration with hierarchical Gaussian processes under constraints (SZ, AB, DP)
- Code: https://github.com/szhOu/Constrained-GP

Thank you!

