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We take an effective expansion of QCD 
preserving chiral symmetry. 

The interaction can be ordered in terms 
of powers of  

•  is a momentum or pion mass 

•  is the symmetry breaking scale 

Gives a systematic ordering to improve 
the interaction.
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We are working in an EFT framework without pions 

Our interaction takes the form: 

                              

       

v(LO)(k) = CS + CTσ1 ⋅ σ2

v(NLO)(k) = C1k2 + C2k2σ1 ⋅ σ2 + C3S12(k) + C4k2τ1 ⋅ τ2

+iC5S ⋅ (K × k) + C6k2τ1 ⋅ τ2σ1 ⋅ σ2 + C7S12(k)τ2 ⋅ τ2

Pionless EFT
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Undetermined Low Energy 
Constants (LECs)



To use these interactions, they must be regularized in some fashion and 
must be local in coordinate space (for QMC). 

We employ a Gaussian cutoff in coordinate space, which smears  
-functions upon Fourier transformation. 

For this work, we choose  corresponding to a momentum 
space cutoff of 200 MeV.

δ

R0 = 2.0 fm

Regularization

f(r) =
1

π3/2R3
0

e−( r
R0 )
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To calibrate our EFT model, we use a Bayesian framework 
                       

The posterior gives the distribution for a certain set of parameters,  (LECs), given 
data,  (scattering data), and any other information, , which we maximize. 

The likelihood gives the probability of scattering data for a given parameter set 
•Find region of minimum  

The prior encodes any external information we know about the parameters. 
• Initial point/naturalness  ours is relatively uninformative
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Model Calibration
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2πσi ) e− χ2
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Proof of Concept Calibration

LO: 0.5 MeV, =57 (np, )ndata Ed NLO: 15 MeV, =773 (np, pp, , np scatt. length)ndata Ed



2 fm Cutoff Fits



In our model calibration, we can include theory errors  
(Wesolowski et. al. Phys. Rev. C 104, 064001) 

Where 

and  sets the scale of the correction for observable , 
and  sets the magnitude of the correction. 

yref,i yi
c̄

Full Bayesian model calibration

χ2 = ∑
i

(yi − ti)2

σ2
exp,i

→ χ2 = ∑
i

(yi − ti)2

σ2
exp,i + σ2

ther,i

σ2
ther,i =

(yref,i c̄ Qn+1
i )2

1 − Q2
i

, Qi =
max[psoft, pi]

Λb ∼ mπ
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Correlated theory errors

We can correlate our theory errors as well: 

with the goodness of fit determined by the Mahalanobis distance 
(“modified” ) 

Correlations on data introduces strong degeneracies in the covariance 
matrix, so we use Gaussian processes to smooth the correlations.

χ2

σ2
ther,i =

(yref,i c̄ Qn+1
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→ σ2
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j

1 − Qi Qj
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dM( ⃗a ) = ( ⃗y − ⃗t( ⃗a ))T(σ2
exp + σ2

ther,ij)
−1( ⃗y − ⃗t( ⃗a ))



“Wesolowski Plots” for Pionless EFT at NLO

No Errors
Uncorr. Errors
Corr. Errors



“Wesolowski Plots” for Pionless EFT at NLO

No Errors
Uncorr. Errors
Corr. Errors



Full posterior

We have two more parameters to estimate in a full Bayesian model 
calibration:  (scale of truncation error) and  (EFT breakdown 
scale). 

Full posterior for our EFT: 
 

The posterior is found via sampling of .

c̄2 Λb

P( ⃗a , c̄2, Λb | ⃗y exp, I)

Total posterior

∝ P( ⃗y exp | ⃗a , Σ, I)

Likelihood for ⃗a

P( ⃗a | I)

Prior for ⃗a

P(c̄2 |Λb, ⃗a , I)

Posterior for c̄2

P(Λb | ⃗a , I)

Posterior for Λb

{ ⃗a , c̄2, Λb}



For  we choose (following Melendez et. al. Phys. Rev. C 100, 044001) 
 

With hyper parameters: 
 

 

c̄2

P(c̄2 | ⃗a , Λb, I) ∼ χ−2 (ν, τ2( ⃗a , Λb))

ν = ν0 + Nobsnc

τ2( ⃗a , Λb) =
1
ν

ν0τ0 + ∑
n,i

c2
n,i( ⃗a , Λb)

cn,i ( ⃗a , Λb) =
y(n)

i ( ⃗a (n)) − y(n−1)
i ( ⃗a (n−1))

yref ( max[psoft, pi]
Λb )

n

Posterior for c̄2



Posterior for Λb

Our posterior for the breakdown scale also uses these hyper 
parameters: 

 

This posterior needs to be numerically normalized as the 
normalization constant is dependent on .

P(Λb | ⃗a , I) ∝
P(Λb | I)

τν∏n,i ( max[psoft, pi]
Λb )

n

⃗a



Full Model Calibration

PRELIMINARY



Marginal  
Distributions

PRELIMINARY



Truncation Error Parameters

PRELIMINARY



• Investigate fits at N3LO in the pionless regime 
• Emulation for calculation of scattering observables 

• Include other degrees of freedom: ’s and ’s  A new set of interactions 
with uncertainty quantification in EFTs

π Δ →
χ

Future Steps
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