Correlations are important!

$$
R_{x, y}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}
$$

$$
\operatorname{CoD}(x, y)=R_{x, y}^{2}
$$

coefficient of determination
bivariate correlation coefficient

Consider observable $\quad z=x-y$
Variance of difference: $\quad \sigma_{z}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}-2 R_{x, y} \sigma_{x} \sigma_{y}$

$$
\begin{aligned}
& R_{x, y} \approx 1 \longrightarrow \sigma_{z} \approx\left|\sigma_{x}-\sigma_{y}\right| \quad \text { reduced } \\
& R_{x, y} \approx 0 \longrightarrow \sigma_{z} \approx \sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}} \quad \text { large }
\end{aligned}
$$

Are variances of differences of smoothly varying observables small? One needs to know the value of $R_{x, y}$!

Statistical correlations of nuclear quadrupole deformations and charge radii

Quadrupole deformations and charge radii vary smoothly! But what about correlations?

- The smootr

Until you calculate you do not know!

 enough that differences have small errors.- Because the points did not jump around, the errors must be correlated.

- The calculated CoD diagrams show patterns that are fairly localized as compared to the smooth trends of observables.
- The local variations of CoDs reflect the underlying deformed shell structure and changes of single-particle configurations.
- The errors on radii differences are actually important to know!

We (R. Jain, L. Neufcourt, S.A. Giuliani, and WN) are currently finalizing the BMA mass table based on predictions of several global DFT mass models. The results will be stored at

The results of our analysis (masses and covariances) will allow user to extract mass differences (Q-values) and reliable uncertainties for them

Bayesian Model Mixing (BMM) for masses

V. Kejzlar, L. Neufcourt, and WN

See M. Pratola's Tawaret presentation for definitions
Global linear model: $\quad y^{*}(x)=\sum_{k=1}^{p} \omega_{k}^{*} f_{k}(x) \quad \omega_{k}^{*} \geq 0, \quad \sum_{k} \omega_{k}^{*}=1$
Dirichlet model. The weights are given hierarchically by a Dirichlet distribution:

$$
p(\boldsymbol{\omega} \mid \boldsymbol{\alpha}) \propto \prod \omega_{k}^{\alpha_{k}-1}
$$

$$
\omega_{1}, \ldots, \omega_{p} \geq 0: \sum_{k} \omega_{k}=1^{k} \quad\left\langle\omega_{k}\right\rangle=\alpha_{k} / \sum_{k} \alpha_{k}
$$

$\alpha=(0.3,0.3,0.3)$

(b)

$$
\alpha=(1.3,1.3,1.3)
$$

$\alpha<1$ leads to model selection while $\alpha>1$ encourages true mixing

Local BMM models, weights vary in the domain x

$$
y^{*}(x)=\sum_{k=1}^{p} \omega_{k}^{*}(x) f_{k}(x) .
$$

We assume that at every location x the model weights follow jointly a Dirichlet distribution:

$$
\omega_{1}(x), \ldots, \omega_{p}(x) \mid x \sim \operatorname{Dir}\left(\alpha_{i}(x), \ldots, \alpha_{p}(x)\right)
$$

The test case: twoneutron separation energies
different evidences calculations

BMM based on Dirichlet

model	train	test	calibrated σ
$/ \mathrm{w} \delta_{f}$			
SkM *	1.19	1.14	$1.19(4)$
SkP	0.84	0.74	$0.83(3)$
SLy4	0.99	0.81	$0.99(3)$
SV-min	0.77	0.63	$0.77(2)$
UNEDF0	0.77	0.63	$0.77(2)$
UNEDF1	0.75	0.50	$0.75(2)$
UNEDF2	0.85	0.67	$0.84(3)$
FRDM-2012	0.48	0.45	$0.47(1)$
HFB-24	0.42	0.40	$0.42(1)$
rms rms	0.81	0.70	
BMA (Full train)	0.42	0.40	$0.42(1)$
BMA (S + MC)	0.36	0.36	$0.49(14)$
BMA (S + Laplace)	0.36	0.35	$0.52(16)$
BMA (S + Exact)	0.37	0.37	$0.47(13)$
Dirichlet + GPM	0.25	0.33	$0.26(1)$

A useful online tool for mass predictions!

