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Rx,y =
cov(x, y)

σxσy

CoD(x, y) = R2

x,y

coefficient of determination
bivariate correlation coefficient

Correlations are important!

Rx,y Rx,y

Phys.Rev.C81, 051303 (2010)



2W. Nazarewicz, BandCamp, ISNET 2023

Variance of difference:

Rx,y ≈ 1

Are variances of differences of smoothly varying 
observables small? One needs to know the value of                               

!

Consider observable z = x− y
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Rx,y ⇡ 0 σz ≈

√

σ
2
x + σ

2
y

σz ≈ |σx − σy| reduced

large

Rx,y
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Quadrupole deformations and charge radii vary smoothly! But what about 
correlations?

Statistical correlations of nuclear quadrupole deformations 
and charge radii

P.-G. Reinhard & WN, Phys. Rev. C 106, 014303 (2022)

• The smooth mean smooth, does not imply that the correlation length is long 
enough that differences have small errors.

• Because the points did not jump around, the errors must be correlated.
?

nuclear
shapes nuclear

sizes

Until you calculate you do not know!
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• The calculated CoD diagrams show patterns that are fairly  
localized as compared to the smooth  trends of observables.

• The local variations of CoDs reflect the underlying deformed 
shell structure and changes of single-particle configurations. 

• The errors on radii differences are actually important to know! 
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We (R. Jain, L. Neufcourt, S.A. Giuliani, and WN) are currently  finalizing 
the BMA mass table based on predictions of several global DFT mass 
models. The results will be stored at

The results of our analysis (masses and covariances) will allow user to 
extract mass differences (Q-values) and reliable uncertainties for them
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Bayesian Model Mixing (BMM) for masses 

y∗(x) =
p∑

k=1

ω∗

kfk(x)Global linear model: ω
∗

k ≥ 0,

∑

k

ω
∗

k = 1

p(ω|α) ∝
∏

k

ω
αk−1

k

Dirichlet model. The weights are given hierarchically by a Dirichlet distribution:

ω1, ...,ωp ≥ 0 :

∑

k

ωk = 1 〈ωk〉 = αk/
∑

k

αk

V. Kejzlar, L. Neufcourt, and WN

a= (0.3,0.3,0.3) a= (1.3,1.3,1.3)

a < 1 leads to model selection while a > 1 encourages true mixing

See M. Pratola’s Tawaret presentation for definitions
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Local BMM models, weights vary in the domain x

6 Neufcourt, Kejzlar and Nazarewicz

where �̃k and �̃f,k represent the posterior modes and e⌃k = (�D2l(�̃f,k, e�k))�1 is the
inverse of the Hessian matrix of second derivatives of l(�f,k,�k) = log p(y|�f,k, �̃k,Mk)+
log ⇡(�f,k, �̃k|Mk). For �k ⇠ Gamma(a, b) and �f,k ⇠ N(µ, s2), we have
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3. Bayesian model mixing

Let us suppose that the true physical process y⇤(x), from which the observations
(xi, yi) are generated, is not necessarily one of the proposed models but a general
combination of the form

y⇤(x) =
pX

k=1

!⇤
k(x)fk(x). (5)

In that case, each of the individual models has a systematic error given by

�k(x) := fk(x)� y⇤(x) = (1� !k(x))fk(x)�
X

`6=k

!`(x)f`(x).

It is then natural to consider a general statistical model of the form

yi =
pX

k=1

!k(xi)fk(xi) + �✏i = (! · f)(xi) + �✏i. (6)

where � represents the scale of the error of the mixture model and f(xi) is a vector
of theoretical values for observation (xi, yi) provided by the models considered, i.e.,
f(xi) := (f1(xi), ..., fp(xi)).

When
P

k !k = 1, Eq. (6) can be equivalently written in term of the residuals
�yi,k := yi � fk(xi) as

!(xi) · �yi = �✏i. (7)

This corresponds to a decomposition of the null function on the basis of functions
composed of the residual functions of each model. Consequently, the vector ! max-
imizing the (Gaussian) likelihood is orthogonal to all the residuals with respect to
the law of ✏. In practice, the weights !(x) must be taken in a space where inference
is possible. This can be done in many ways. Here, we will highlight a few which are
tractable, suggestive, and fully Bayesian.

In fact, one can take fuller advantage of the diversity of the models by offsetting
the systematic errors. Indeed, a model with overall large residuals will receive overall

ω1(x), . . . ,ωp(x)|x ∼ Dir(αi(x), . . . ,αp(x))

We assume that at every location x the model weights follow jointly a Dirichlet 
distribution:

The test case: two-
neutron separation 
energies

different evidences
calculations

A useful online 
tool for mass 
predictions! BMM based on Dirichlet


