

RPC EcoGas@GIF++ setup

Luca Quaglia¹ on behalf of the RPC EcoGas@GIF++ collaboration

¹University and INFN TORINO

Overview

- The ECOgas@GIF++ collaboration and its aims
- Experimental setup
- Aging studies and ISE measurements
- Beam tests results
- Conclusions and future plans

Why ecogas for RPCs?

- RPCs employ gas mixtures containing a high fraction (> 90%) of fluorinated gases (C₂H₂F₄ and SF₆) with high Global Warming Potential (GWP)
 - ightharpoonup C₂H₂F₄ ~ 1430, SF₆ ~ 22800
- EU regulations imposed a progressive phase down of F-gases production and usage
- Search for more eco-friendly gas mixtures for RPCs
- R&D campaign started by replacing $C_2H_2F_4$ with a combination of $C_3H_2F_4$ (**HFO**, GWP ~ 6) and CO_2

The ECOgas@GIF++ collaboration

- Collaboration among several groups (ALICE, ATLAS, CMS, EP-DT and SHiP/LHCb)
- Dual aim of the collaboration:
 - Long-term stability studies under irradiation
 - > Performance studies in beam tests
- Each group provided RPC prototypes to be tested
- Common effort for manpower, resources and materials
- ❖ Different bakelite production, electrode thickness and gas gap thickness
- Project supported by the <u>Aida Innova project</u> (task 7.2)

The setup - Trolley 1

ALICE RPC:

- -50x50 cm²
- -2 mm thick bakelite electrodes
- -2 mm single gas gap
- -2D readout, 16 strips per plane
- -Strip pitch ~ 3 cm
- -TDC or digitizer readout

SHiP/LHCb RPC:

- $-70x100 \text{ cm}^2$
- -1.6 mm thick bakelite electrodes
- -1.6 mm single gas gap
- -2D readout, 32 strips per plane
- -Strip pitch ~ 1 cm
- -TDC readout

Picture of trolley 1 - Upstream - 6 m from the source

The setup - Trolley 3

CMS RE1 1 RPC:

- -2 mm thick bakelite electrodes
- -2 mm double gas gap
- -1D readout, 128 strips
- -Strip pitch ~ 1.2 cm
- -TDC readout

Bari-1p0

- -1 mm thick bakelite electrodes
- -1 mm single gas gap
- -1D readout, 32 strips
- -Strip pitch ~ 1.27 cm
- -TDC readout 70x100 cm²

EP-DT RPC:

- -70x100 cm²
- -2 mm thick bakelite electrodes
- -2 mm single gas gap
- -1D readout, 7 strips
- -Strip pitch ~ 2.1 cm
- -Digitizer readout

ATLAS (small) RPC*:

- -10x50 cm²
- -1.8 mm thick bakelite electrodes
- -2 mm single gas gap
- -1D readout, 1 strip (3 cm thick) + confirmation scintillator on RPC
- -Digitizer readout

Gas mixtures tested during beam time

ATLAS/CMS standard gas mixture:

95.2%
$$C_2H_2F_4$$
, 4.5% $i-C_4H_{10}$, 0.3% $SF_6 -> GWP ~ 1430$

ECOmix 2:

35% HFO, 60%
$$CO_2$$
, 4% i- C_4H_{10} , 1% SF_6 -> GWP ~ 230

❖ ECOmix 3:

25% HFO, 69%
$$CO_2$$
, 5% i- C_4H_{10} , 1% SF_6 -> GWP ~ 230

- Irradiation campaign with ECO2, since it showed better performance in beam test, with all RPCs
 - Current stability and resistivity monitored over time
- Problem
 - Currents are much higher with ecogas wrt standard gas mixture

Standard gas mixture

ECO2 gas mixture

Solution

- > For preliminary aging studies we irradiate at 50% efficiency
- Results shown for SHiP RPC, 1.6 mm single gas gap -> 8.7 kV corresponds to 50% efficiency at 2.2

Weekly source off current scans

- Monitor dark current stability
- Once every two months
 - Ar is flushed into the RPCs to measure resistivity

Trend of absorbed current by the SHiP RPC - 1.6 mm single gas gap

Source off weekly scans results

Beam test preliminary digitizer studies

- ALICE RPC equipped with digitizer readout
 - 7 mixtures tested, changing CO₂/HFO ratio from 95/0 to 55/40
 - Source OFF and under irradiation analysis still ongoing, preliminary results

Muon prompt charge spectra for different eco-friendly gas mixtures

Mixture	R134a (%)	HFO (%)	CO2 (%)	i-C4H10 (%)	SF6 (%)
STD	95.2	0	0	4.5	0.3
MIX0	0	0	95	4	1
MIX1	0	10	85	4	1
MIX2	0	20	75	4	1
MIX3	0	25	69	5	1
MIX4	0	30	65	4	1
MIX5	0	35	60	4	1
MIX6	0	40	55	4	1

Mixtures tested

Efficiency drop at working point for different eco-friendly gases

ISE measurement - preliminary

- Presence of fluorine in the gas mixtures
 - Gas radiolysis under irradiation
 - > F⁻ ions could combine with H₂0 (humidified gas mixture)
 - Production of HF that could damage the bakelite

F⁻ ions production as a function of the instant dose rate

ISE measurement setup

- Ion Selective Electrode (ISE) measurements to quantify the production of F⁻ ions
 - Output gas is bubbled in distilled water + TISAB II
 - Continuous measurement of F⁻ ions concentration
 - Production in ppm/h estimated
 - Hints to higher production for eco-friendly gases

Conclusions

- Ongoing R&D campaign for C₂H₂F₄ replacement with C₃H₂F₄ + CO₂ in RPC gas mixture
 - April-May 2022 beam time R&D studies with ALICE RPC and digitizer readout
 - ➤ July 2022 beam time to re-validate last year results (STD+ECO2+ECO3)

- Irradiation campaign with ECO2 is currently ongoing
 - > Seems stable so far (to be investigated further since we are irradiating at 50% efficiency)

- ❖ Preliminary ISE measurement shows increase F⁻ ions production with eco-friendly gases
 - > To be investigated further

- R&D study on a few eco-friendly mixtures with digitizer:
 - ➤ Varying CO₂/HFO ratio from 95/0 to 55/45
 - Data needs further analysis
 - Study of charge spectra could reveal interplay of CO₂ and HFO

Future plans & requests

- Aging campaign currently ongoing with ECO2 gas mixture (60% CO₂ and 35% HFO)
- Possibly perform new and more systematic ISE measurement for HF production

Request from ECOgas:

- We would like to have a dedicated HFO line
 - Up to now we use small bottles placed in the gas room
 - Frequent replacement (every 3 weeks or so) with risk of leaks and always require a person on site for the change
- We would like to install two RadMon sensors on our trolleys to measure the instant dose rate to have a measure of the real radiation to which we are exposing the detectors

Thank you for your attention!