Performance and radiation hardness of Tower 180 nm MALTA monolithic pixel sensors

Martin Gazi (Oxford)

P. Allport (Birmingham), I. Asensi Tortajada (CERN), D.V. Berlea (DESY), D. Bortoletto (Oxford), C. Buttar (Glasgow), E. Charbon (EPFL), F. Dachs (CERN), V. Dao (CERN), D. Dobrijevic (CERN, Zagreb), L. Flores Sanz de Acedo (CERN, Glasgow), M. Gazi (Oxford), L. Gonella (Birmingham), V. Gonzalez (Valencia), G. Gustavino (CERN), M. LeBlanc (CERN), H. Pernegger (CERN), F. Piro (CERN, EPFL), P. Riedler (CERN), H. Sandaker (Oslo), A. Sharma (CERN), W. Snoeys (CERN), C.A. Solans Sanchez (CERN), T. Suligoj (Zagreb), M. van Rijnbach (CERN, Oslo), M. Vazquez Nunez (CERN, Valencia), J. Weick (CERN, Darmstadt), S. Worm (DESY), A.M. Zoubir (Darmstadt)

TREDI 2023 - 18th Trento Workshop on Advanced Silicon Radiation Detectors

01 March 2023

Motivation for Monolithic pixel detectors

□ Next generation of high-energy physics hadron experiments demanding on detectors

- □ High radiation tolerance
- □ High granularity (2 MHz/mm² hit rates)
- Low material budget (cooling, power consumption)
- □ Good timing response (<25 ns)
- □ Large surface area -> affordable?

Monolithic Active Pixel Sensors (MAPS)

Hybrid detectors

- > ASIC bump-bonded to sensor
- > Expensive bump bonding
- > Well-understood radiation tolerance

Monolithic sensors

- > One chip (readout + sensor)
 - No bump bonding, less power needs

Radiation tolerance needs to be studied

Focus of this talk —

Readout electronics

Tower MALTA

- Full-scale demonstrator to target specifications for ATLAS ITk outer layer
- 180 nm Tower Semiconductor (formerly TowerJazz) CMOS imaging technology process
 Utilising Tower modified process

H. Pernegger, et al, 2017 JINST 12 P06008

01/03/2023

MALTA pixel and readout

 $\square MALTA pixel pitch: 36.4 x 36.4 \mu m ATLAS: 50x250/400 \mu m^2$

- □ Collection electrode: 3 x 3 µm, small capacitance (5 fF)
- □ Low power usage: $1 \mu W$ per pixel ATLAS: ~150 μW /pixel

(<70 mW/cm² analog power)

□ Asynchronous read-out -> no distributed clock

□ Readout: clock-less, asynchronous

Parallel output signal transmission
 Theoretical hit rate >100 MHz
 Oversampling used for time-stamping
 No time-over-threshold

I. Berdalovic et al, JINST, 2018, 13, C01023

The evolution of MALTA					
MALTA1	Jan 2018	Large demonstrator 2 x 2 cm ²		-	Sensor functional, slow control issues Poor lateral field after irradiation
Mini-MALTA	Jan 2019	Small demonstrator 1.7 x 0.5 cm ²		-	Introduction of sensor modification Radiation hard, full efficiency at 1e15 n _{eq} /cm ²
MALTA C	Aug 2019	Epitaxial (Epi) and Czochralski (Cz) substrates		-	Significant improvement of Cz substrate efficiency at high voltage after irradiation
MALTA2	Jan 2021	Smaller matrix 2 x 1 cm ²		- -	Improved chip synchronisation Improved time resolution Improved noise performance

01/03/2023

Martin Gazi, TREDI 2023

Additional process modifications

M. Munker, JINST 14 (2019) C05013

Additional process modifications

M. Munker, JINST 14 (2019) C05013

Sensor substrate – Epitaxial and Czochralski

□ Variation introduced in MALTA C – also investigated with MALTA2

- Epitaxial silicon substrate limited to 30 µm
 High resistivity
- Czochralski (Cz) substrate (3-4 kΩ cm)
 - \Box used for full detection volume (100 300 µm)
 - \square depletion proportional $\sqrt{V_{SUB}}$
 - □ results in larger cluster size
 - enhanced radiation resistance

Publication submitted to JINST, preprint available at arXiv:2301.03912

MALTA2

F. Piro et al, TNS, 2022, vol 69, no 6

□ Features 3 flavours (Standard, NGAP, XDPW) and 2 substrates (Epi and Cz)

□ Readout improvements:

□ Cascoded transistor M3 -> increases gain

□ Enlarged transistor M4 -> lower noise and higher gain

□ Allows for operation at lower threshold at the order of hundreds of electrons

□ Significantly **improved noise performance** compared to MALTA

MALTA-Telescope performance

- □ 180 GeV proton/pion beam at SPS at CERN
- Dedicated beam telescope with flexible trigger logic
 6 MALTA tracking planes + scintillator for timing
- Cold box for irradiated samples
- □ Allows for two independent Devices Under Test (DUTs) simultaneously

MALTA2 – neutron irradiated – Epi vs Cz

MALTA2 Cz shows improved efficiency after irradiation compared to Epi
 Both samples irradiated to 2E15 1 MeV n_{eq}cm⁻²

□ Epitaxial sample: maximum efficiency of 86% reached at 10 V, then decreases with increasing bias

01/03/2023

MALTA2 – neutron irradiated – conductive glue

□ Contact of MALTA2 Czochralski chip with PCB crucial for efficiency

□ Conductive glue layer applied on backside - bubble pattern emerges due to glue inhomogeneity

□ Areas with good contact achieve close to 100% efficiency at high substrate bias

□ Fiducial regions account for 10.3% of the chip

MALTA2 Czochralski – irrad. 1E15 1 MeV N_{eq} cm⁻² SUB = -12 V, threshold = 260 el.

MALTA2 – neutron irradiated – back-metallisation

- Back metallisation applied post-dicing to enhance contact with the substrate
- □ Efficiency uniformity restored across the matrix
- □ Chip irradiated to 3E15 n_{eq}cm⁻² reaches efficiency above 95% at high SUB and low threshold

01/03/2023

Martin Gazi, TREDI 2023

MALTA2 – neutron irradiated

MALTA2

CZ Irradiated Samples [1 MeV n /cm²]

1E15, Fiducial Area, Conductive Glue NGAP, 100 um
 2E15, Fiducial Area, Conductive Glue NGAP, 300 um
 2E15, Full Chip, Backside Metallization XDPW, 100 um
 3E15, Full Chip, Backside Metallization XDPW, 100 um
 3E15, Fiducial Area, Regular Backside XDPW, 100 um
 3E15, Fiducial Area, Regular Backside XDPW, 100 um

MALTA2 Czochralski efficiency >95% up to neutron irradiation levels of 3E15 1 MeV n_{eq}cm⁻²
 Sufficient substrate bias voltage needed – increases with irradiation level
 Performance enhanced by backside metallisation

MALTA2 – neutron irradiated – timing

- □ Time of arrival of leading hit with respect to a scintillator reference
- Applied signal propagation correction
- □ NOT corrected for sampling jitter (0.9 ns) and scintillator jitter (~0.5 ns)

more than 98% of the clusters are collected within 25 ns

more than 95% of the clusters are collected within 25 ns

Conclusions and Future

- □ MALTA2 demonstrates improvements over the previous members of the MALTA family
- □ Chips on Czochralski substrate show enhanced radiation hardness compared to Epi
- □ Full chip efficiency >95% after 3e15 n_{eq}/cm² demonstrated with Czochralski sensors
- □ **Backside-metallisation** greatly improves efficiency of irradiated sensors
- Un-irradiated MALTA2 sensors with <2 ns timing resolution
 After 3e15 1 MeV n_{eq}/cm² irradiation -> RMS 6.3 ns

MALTA3 in development

- □ Small demonstrator
- Data serialisation
- Improved in-pixel digital electronics

01/03/2023

- □ <1 ns time-stamping in periphery
- More reliable pixel masking

Martin Gazi, TREDI 2023

Acknowledgements

- This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 101004761.
- Supported by the Marie Sklodowska-Curie Innovative Training Network of the European Commission Horizon 2020 Programme under contract number 675587 (STREAM).
- This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.(IJS, Ljubljana, Slovenia)

Telescope DAQ

01/03/2023

Martin Gazi, TREDI 2023

MALTA2 – back-metallisation

□ Back metallisation leads to improved propagation of substrate voltage

□ Back-metallised chips demonstrate **enhanced cluster size** as SUB voltage increased

MALTA2 – timing

Time walk evaluated using pixels with analog output
 Small signal arrives later -> from charge-sharing effects
 Large charge signals with time-talk ~10 ns

Uniformity of chip response verified both with change injection and testbeam measurements

01/03/2023

Martin Gazi, TREDI 2023

Unirradiated Epi sensor exposed to Sr-90 source 95% of signal within 25 ns CHARGE [e⁻]

NUMBER OF HITS