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Motivation for Monolithic pixel detectors
q Next generation of high-energy physics hadron experiments demanding on detectors

q High radiation tolerance 
q High granularity (2 MHz/mm2 hit rates)
q Low material budget (cooling, power consumption)
q Good timing response (<25 ns)
q Large surface area -> affordable?

ATLAS ITK 
HL-LHC tt event

<μ> = 200 pT>1 GeV 

(1 – 2e15 neq/cm2)
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Monolithic Active Pixel Sensors (MAPS)

Hybrid detectors 
Ø ASIC bump-bonded to sensor 
Ø Expensive bump bonding
Ø Well-understood radiation tolerance 

Monolithic sensors
Ø One chip (readout + sensor)
Ø No bump bonding, less power needs
Ø Radiation tolerance needs to be studied

Focus of this talk

Readout electronics 
integrated with the sensor

in one chip
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Tower MALTA

q Full-scale demonstrator to target specifications
for ATLAS ITk outer layer 

q 180 nm Tower Semiconductor (formerly TowerJazz) 
CMOS imaging technology process

q Utilising Tower modified process

q Low-dose n-type implant under 
p-well fully depleted pixel area

q Charge carriers pushed towards 
the collection electrode

q Reduces charge carrier capture 
probability

Modified process

H. Pernegger, et al, 2017 JINST 12 P06008

http://iopscience.iop.org/article/10.1088/1748-0221/12/06/P06008
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MALTA pixel and readout

q MALTA pixel pitch: 36.4 x 36.4 µm ATLAS: 50x250/400 μm2

q Collection electrode: 3 x 3 µm, small capacitance (5 fF)
q Low power usage: 1 µW per pixel ATLAS: ~150 μW/pixel

(<70 mW/cm2 analog power)
q Asynchronous read-out -> no distributed clock

q Readout: clock-less, asynchronous
q Parallel output signal transmission
q Theoretical hit rate >100 MHz
q Oversampling used for time-stamping
q No time-over-threshold

I. Berdalovic et al, JINST, 2018, 13, C01023

https://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01023https:/iopscience.iop.org/article/10.1088/1748-0221/13/01/C01023
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The evolution of MALTA
2018MALTA1

2019Mini-MALTA

2019MALTA C

2021MALTA2

Large demonstrator
2 x 2 cm2

Small demonstrator
1.7 x 0.5 cm2

Epitaxial (Epi) and 
Czochralski (Cz) 

substrates

- Improved chip synchronisation
- Improved time resolution
- Improved noise performance

- Introduction of sensor modification
- Radiation hard, full efficiency at 1e15 neq/cm2

- Sensor functional, slow control issues
- Poor lateral field after irradiation

- Significant improvement of Cz substrate 
efficiency at high voltage after irradiation

Jan

Jan

Aug

Jan Smaller matrix
2 x 1 cm2
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Additional process modifications

“Standard” modified process

Lateral electric field not sufficient
to push the deposited charge towards

the small central electrode.
- Efficiency decreases in pixel corners
- Effect amplified by radiation damage

Extra Deep P-Well
(XDPW)

N-layer gap
(NGAP)

Process modifications to 
improve charge collection 

in the pixel edges

M. Munker, JINST 14 (2019) C05013 

https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013/meta
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Sensor substrate – Epitaxial and Czochralski

q Variation introduced in MALTA C – also investigated with MALTA2  

q Epitaxial silicon substrate limited to 30 µm
q High resistivity

q Czochralski (Cz) substrate (3-4 kΩ cm)
q used for full detection volume (100 – 300 µm) 
q depletion proportional √VSUB
q results in larger cluster size
q enhanced radiation resistance

Publication submitted to JINST, preprint available at arXiv:2301.03912

https://arxiv.org/abs/2301.03912
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MALTA2
q Features 3 flavours (Standard, NGAP, XDPW) and 2 substrates (Epi and Cz)
q Readout improvements:

q Cascoded transistor M3 -> increases gain
q Enlarged transistor M4 -> lower noise and higher gain

q Allows for operation at lower threshold at the order of hundreds of electrons
q Significantly improved noise performance compared to MALTA

2.7x

cascoded

enlarged

F. Piro et al, TNS, 2022, vol 69, no 6

https://ieeexplore.ieee.org/document/9764367
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MALTA-Telescope performance
q 180 GeV proton/pion beam at SPS at CERN 
q Dedicated beam telescope with flexible trigger logic

q 6 MALTA tracking planes + scintillator for timing
q Cold box for irradiated samples
q Allows for two independent Devices Under Test (DUTs) simultaneously

Average time resolution of 2.1 ns
Hit resolution on DUT < 5 µm

3 tracking planes
(6 in total)

DUTs 
(inside the box)

Particle beam

Pixel 
width



q MALTA2 Cz shows improved efficiency after irradiation compared to Epi
q Both samples irradiated to 2E15 1 MeV neqcm-2

q Epitaxial sample: maximum efficiency of 86% reached at 10 V, then decreases with increasing bias
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MALTA2 – neutron irradiated – Epi vs Cz

MALTA2 EpiMALTA2 Cz (conductive glue)

Similar trend observed
for MALTA Epi and Cz
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MALTA2 – neutron irradiated – conductive glue
q Contact of MALTA2 Czochralski chip with PCB crucial for efficiency
q Conductive glue layer applied on backside - bubble pattern emerges due to glue inhomogeneity
q Areas with good contact achieve close to 100% efficiency at high substrate bias

q Fiducial regions account for 10.3% of the chip
MALTA2 Czochralski – irrad. 1E15 1 MeV Neqcm-2

SUB = -12 V, threshold = 260 el.

Fiducial 
regions
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MALTA2 – neutron irradiated – back-metallisation
q Back metallisation applied post-dicing to enhance contact with the substrate
q Efficiency uniformity restored across the matrix
q Chip irradiated to 3E15 neqcm-2 reaches efficiency above 95% at high SUB and low threshold

MALTA2 Czochralski – irrad. 3E15 1 MeV Neqcm-2

SUB = -50 V, threshold = 115 el.

Pixel masking 
to reduce noise

very high doping n-layer,
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MALTA2 – neutron irradiated

q MALTA2 Czochralski efficiency >95% up to neutron irradiation levels of 3E15 1 MeV neqcm-2

q Sufficient substrate bias voltage needed – increases with irradiation level
q Performance enhanced by backside metallisation

NGAP, 100 um

NGAP, 300 um

XDPW, 100 um

XDPW, 100 um

XDPW, 100 um

XDPW, 100 um
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MALTA2 – neutron irradiated – timing
q Time of arrival of leading hit with respect to a scintillator reference
q Applied signal propagation correction
q NOT corrected for sampling jitter (0.9 ns) and scintillator jitter (∼0.5 ns)

Neutron irradiation
3E15 1 MeV neq/cm2

more than 95% of the clusters 
are collected within 25 ns

Before irradiation
RMS: 1.8 ns

(from Gaussian fit)

After irradiation
RMS: 6.3 ns

(from Gaussian fit)

more than 98% of the clusters 
are collected within 25 ns

Threshold: 170 e- Threshold: 95 e-
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Conclusions and Future
q MALTA2 demonstrates improvements over the previous members of the MALTA family
q Chips on Czochralski substrate show enhanced radiation hardness compared to Epi
q Full chip efficiency >95% after 3e15 neq/cm2 demonstrated with Czochralski sensors
q Backside-metallisation greatly improves efficiency of irradiated sensors
q Un-irradiated MALTA2 sensors with <2 ns timing resolution

q After 3e15 1 MeV neq/cm2 irradiation -> RMS 6.3 ns

MALTA3 in development
q Small demonstrator
q Data serialisation
q Improved in-pixel 

digital electronics 
q <1 ns time-stamping in periphery
q More reliable pixel masking



18Martin Gazi, TREDI 202301/03/2023

Acknowledgements
q This project has received funding from the European Union’s Horizon 2020 Research and 

Innovation programme under grant agreement No 101004761. 
q Supported by the Marie Sklodowska-Curie Innovative Training Network of the European 

Commission Horizon 2020 Programme under contract number 675587 (STREAM).
q This project has received funding from the European Union’s Horizon 2020 Research and 

Innovation programme under Grant Agreement no. 654168.(IJS, Ljubljana, Slovenia) 



19Martin Gazi, TREDI 202301/03/2023



20Martin Gazi, TREDI 202301/03/2023

Telescope DAQ

Plane 1
MALTA Epi NGAP 

Plane 2
MALTA Cz NGAP 

Plane 3
MALTA Cz STD 

Plane 4
MALTA Cz STD 

Plane 5
MALTA Cz NGAP 

Plane 5
MALTA Epi STD 

DUT1
MALTA2

DUT2
MALTA2
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MALTA2 – back-metallisation
q Back metallisation leads to improved propagation of substrate voltage
q Back-metallised chips demonstrate enhanced cluster size as SUB voltage increased
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MALTA2 – timing

q Time walk evaluated using pixels with analog output
q Small signal arrives later -> from charge-sharing effects
q Large charge signals with time-talk ∼10 ns

q Uniformity of chip response verified both with 
change injection and testbeam measurements

Unirradiated Epi sensor 
exposed to Sr-90 source

95% of signal
within 25 ns

X correction compensates 
for non-uniformities in chip 
response

Y correction due to time 
propagation across the 

column (linear behaviour)


