Serial powering for the CMS IT detector at HL-LHC

Serial powering for the CMS Inner Tracker detector at High Luminosity LHC

Antonio Cassese

INFN - Sezione di Firenze on behalf of the CMS Tracker Group

TREDI: 18th Trento Workshop on Advanced Silicon Radiation Detectors28th February - 2nd March 2023

Trento - Italy

Antonio Cassese (INFN Firenze)

Feb, 28th

TREDI 2023

INFŃ

1 of 19

Outline

- **C** Short introduction of HL-LHC
- **>** Pills of Serial Powering in CMS Inner Tracker
- Caloratory tests on Serial Powering

Report on planar sensor studies in talk **"First test beam results of HPK planar pixel sensors with the CROC readout chip for the CMS Phase 2 Upgrade"** Massimiliano Antonello - 28/02 at 14:25 (link)

Report on plan quad module and 3D spatial resolution studies in talk **"Test beam results of planar pixel quad modules and spatial resolution of 3D pixels for the phase-2 CMS tracker"** Martina Manoni - 28/02 at 15:05 (<u>link</u>)

Report on 3D sensor studies in talk **"Test Beam Results of 3D pixel sensors for the Phase-2 CMS Tracker with the RD53A and CROC readout chips"** Clara Lasaosa García - 01/03 at 11:10 (<u>link</u>)

CMS Phase-2 tracker @ HL-LHC

LHC / HL-LHC Plan

Antonio Cassese (INFN Firenze)

Feb, 28th TREDI 2023

Electronics main requests and innovations

TBPX

• High radiation tolerance:

 \circ 2.3×10^{16} $n_{eq}/cm^2,$ fluence \circ 1.2 Grad, TID

• Improve tracks separation:

- High granularity
- High bandwidth (up to 3.5 GHz/cm² occupancy)
- Low material budget
- Stringent space constraints
- Thin n-in-p silicon sensors
- Innovative power scheme

Feb, 28th

TREDI 2023

2.2

Power distribution strategies

- Large area + granularity \rightarrow large number of channels
- Thin sensors \rightarrow low signal \rightarrow low thresholds and low noise analog circuits
- High data bandwidth + long L1 latency \rightarrow high digital activity

Power distribution strategies

- Large area + granularity \rightarrow large number of channels
- Thin sensors \rightarrow low signal \rightarrow low thresholds and low noise analog circuits
- High data bandwidth + long L1 latency \rightarrow high digital activity

High power budget

More than 3 times the Phase-1 tracker

- Almost same available total cable cross section
- Keep low material budget
- Delivered at ~ 1 ÷ 1.2 V

Power distribution strategies

- Large area + granularity \rightarrow large number of channels
- \bullet Thin sensors \rightarrow low signal \rightarrow low thresholds and low noise analog circuits
- High data bandwidth + long L1 latency \rightarrow high digital activity

High power budget

Antonio Cassese (INFN Firenze)

TREDI 2023

6 of 19

Inner tracker serial powering: why?

Direct powering 50kW/1.2V ~ 40kA (20kg or 10%X₀ of Copper)

Local (POL) conversion DCDC converters not enough radiation hard, heavy and bulky (no space)

TREDI 2023

- The serial powering is the unique scheme compatible with HL-LHC physics
- It is a major technological challenge since it has never been used on large scale
- All the elements in a chain see the same current (by construction) while the voltage is equally shared if all elements represent the very same and constant load
- This is the task of the ShuntLDO, an IP block of the CMS ROC (CROC) developed by the RD53 Collaboration: no additional ancillary components are needed

Antonio Cassese (INFN Firenze)

TREDI 2023

Antonio Cassese (INFN Firenze)

TREDI 2023

Constant current

AC coupled

8 of 19

Serial power distribution

Barrel

8 modules/chain or 10 modules/chain

Antonio Cassese (INFN Firenze)

TREDI 2023

9 of 19

The Shunt-LDO and the serial powering (1)

Serial powering is supported by the readout chip via the Shunt-LDO IP block

- Integrated on-chip solution
 - \circ Low mass, radiation hard and no extra ASICs

The Shunt-LDO and the serial powering (2)

Serial powering is supported by the readout chip via the Shunt-LDO IP block

- Integrated on-chip solution
 - \circ Low mass, radiation hard and no extra ASICs

Shunt-LDO

- Equivalent to a resistor in series with a voltage source
 (ΔV = f(l))
 - Healthy behaviour in parallel applications
- Each module has its own local ground
 - \circ I/O in AC
 - Not trivial bias distribution to sensors
- The chain has to provide enough power for transients: 20-25% current headroom ⇒ Intrinsically not efficient
- A brand-new world of failure modes

The Shunt-LDO and the serial powering (2)

Power burned in

Chip max

current

Feb, 28th

shunt-LDO

Serial powering is supported by the readout chip via the Shunt-LDO IP block

- Integrated on-chip solution
 - Low mass, radiation hard and no extra ASICs

- Equivalent to a resistor in series with a voltage source $(\Delta V = f(I))$
 - Healthy behaviour in parallel applications
- Each module has its own local ground
 - I/O in AC
 - Not trivial bias distribution to sensors
- The chain has to provide enough power for transients: 20-25% current headroom \Rightarrow Intrinsically not efficient
- A brand-new world of failure modes

TREDI 2023

11 of 19

Laboratory tests

Serial power and 3D pixel module

- 4 3D RD53A modules in series
 - \circ Peltier based cooling
- Same 3D module tested at the beginning and at the end of the powering chain
 - \circ Beta source
 - \circ Look for possible different behaviours (cluster size)
- Same bias voltage at HV power supply
 - \circ "Effective" voltage 30V at the beginning of the chain
 - \circ "Effective" voltage 36V at the end of the chain
 - \circ Comparable leakage current in the two positions

Serial power and 3D pixel module

- 4 3D RD53A modules in series
 - \circ Peltier based cooling
- Same 3D module tested at the beginning and at the end of the powering chain
 - \circ Beta source

A.U.

20000

18000

16000

14000

12000

10000 8000

> 6000 4000

2000

0

0

- \circ Look for possible different behaviours (cluster size)
- Same bias voltage at HV power supply
 - \circ "Effective" voltage 30V at the beginning of the chain
 - \circ "Effective" voltage 36V at the end of the chain
 - \circ Comparable leakage current in the two positions

5

10

15

20

A.U.

Serial power and 3D pixel module

Bare CROC serial powering tests

- 4 CMS ROC (CROC) Single Chip Card • FAN cooling
- Multimeter with scanner card for monitoring
- Multimeter and power supply remotely controlled using a high level C++ library developed for laboratory instruments control
 - Interacts with Ph2_ACF (DAQ software) via a TCP socket

Serial powering for the CMS IT detector at HL-LHC

Bare CROC serial powering tests

- 4 CMS ROC (CROC) Single Chip Card • FAN cooling
- Multimeter with scanner card for monitoring
- Multimeter and power supply remotely controlled using a high level C++ library developed for laboratory instruments control
 - Interacts with Ph2_ACF (DAQ software) via a TCP socket

Antonio Cassese (INFN Firenze)

TREDI 2023

14 of 19

Bare CROC serial powering tests

- 4 CMS ROC (CROC) Single Chip Card • FAN cooling
- Multimeter with scanner card for monitoring
- Multimeter and power supply remotely controlled using a high level C++ library developed for laboratory instruments control
 - Interacts with Ph2_ACF (DAQ software) via a TCP socket

The channels were tuned to an average threshold $\sim 1250e^{-1}$

- Threshold distribution in the chain
- Noise distribution in the chain

Antonio Cassese (INFN Firenze)

Feb, 28th

TREDI 2023

Noise distribution

16 of 19

CROC SLDO irradiation studies

- \bullet Small shift of V_{off} towards higher values with the irradiation
- $V_{ddD/A}$ shift towards higher values with irradiation (lead to the choice of default $V_{ddD/A}$ to be 1.2V)
- OVP shift towards higher values

Summary

- **Contract States of Contract States and Stat**
- **Contract of the set o**
 - ✓ Low material budget
 - ✓ Mechanical constraints
 - \checkmark High level of radiation
 - \checkmark High segmentation of detector
 - \checkmark High power requests
- **O** Advanced status of serial powering studies
- **C** Some other system studies are foreseen

Serial powering for the CMS IT detector at HL-LHC

Thank you for your attention

Antonio Cassese (INFN Firenze)

Feb, 28th

TREDI 2023

Backup

Serial power distribution

TFPX

Antonio Cassese (INFN Firenze)

TREDI 2023

Serial powering for the CMS IT detector at HL-LHC

Dummy modules

TEPX prototype modules

Ring 5

Serial power distribution

Ring 1

TEPX

R4: 11 modules/chain R2: 7 modules/chain

Ring 3

CMS Read Out Chip (C-ROC)

- **CMS chip size (16.8×21.6 mm², 336×432 cells)**
- **3** 65 nm CMOS technology
- **)** Dead time $\leq 1\%$ @3.2 GHz/cm²
- **1** Grad TID (Total Ionizing Dose) resistant
- **Э** 50×50 μm² cell
- **C** Linear analog FE
- **C** Low threshold ($\leq 1000 e^{-}$)
- **)** High hit and trigger rate (up to 4×1.28 Gb/s output links)
- **Control** Serial powering capabilities
- **C** First wafer level test of the new chip has been performed
- **C** Irradiation campaigns and full C-ROC characterization ongoing

RD53: the inner tracker readout chip

RD53 ROC

RD53 collaboration is developing an ROC with:

- Dead time ≤1% @3.2 GHz/cm²
- 0.5 Grad TID resistant
- 65 nm technology
- 50×50 µm² cell
- low threshold ($\leq 1000 \text{ e}^{-}$)
- High hit and trigger rate (up to 4×1.28 Gb/s output links)
- Serial powering capabilities
- CMS chip size (16.8×21.6 mm², 336×432 cells)

RD53: the inner tracker readout chip

RD53A first prototype

- ¹/₂ total size (50×50 µm² cell, 65 nm technology)
- Used for R&D
- Radiation hard up to 0.5 Grad
- Low threshold and high hit and rate capabilities (160 Mbps input and 1.28 Gbps output links)

RD53 ROC

RD53 collaboration is developing an ROC with:

- Dead time ≤1% @3.2 GHz/cm²
- 0.5 Grad TID resistant
- 65 nm technology
- 50×50 µm² cell
- low threshold ($\leq 1000 \text{ e}^{-}$)
- High hit and trigger rate (up to 4×1.28 Gb/s output links)
- Serial powering capabilities
- CMS chip size (16.8×21.6 mm², 336×432 cells)

TREDI 2023

Feb, 28th

R&D and tests

Active R&D ongoing in ATLAS, CMS and RD53 with tests and simulations

- First failure mitigation in CMS: the Inner Tracker can be accessed and any part replaced by design
- Current sharing investigations
- Turn on procedure studies
- Failure modes investigations are currently under study (shunt failure, regulator failure, serial chain failure, ...)
- HV distribution in parallel to modules within the same serial chain

• ...

R&D and tests

Serial Powering concept established

 Serial chains with up to 16 RD53A chips were successfully operated in lab

CROC will be final CMS ROC

• Further tests undergoing in collaboration of RD53, Atlas and CMS

IV curves for 16x1: Ramp up and ramp down

IV curves for 4x4

- Measured two VIN per four chips on same level in chain
- Reached PS voltage limitation (6V) at 4A
- Small differences between VINs on the same level:
 - Combination of current sharing variations and current path impedance mismatches

Antonio Cassese (INFN Firenze)

TREDI 2023

HV on / LV off state forbidden

- When LV off, the path for the sensor leakage currents might not be established to the readout chip, resulting in a damage
- For operation LV has to be switched on first and then the HV
- HV off / LV on status is also potentially dangerous

HV on / LV off state forbidden

- When LV off, the path for the sensor leakage currents might not be established to the readout chip, resulting in a damage
- For operation LV has to be switched on first and then the HV
- HV off / LV on status is also potentially dangerous

HV power supply off modes

- High/low ohmic mode
- Important for leakage current path
- Different local ground for each module
 - HV off not necessarily means 0 V on sensors (LV on)
 - \circ Biased sensor and leakage current in off mode possible

Test setup

- **Control** Single power supply channel for both Analog and Digital
- **Э** I_{ref} tuned such that $V_{OFS} = 0.50 \pm 0.01 V$
- **Control** Reading of MONITOR header through Scanner card:
 - $\bullet V_{inA}, V_{ddA}, V_{rextA}, V_{refA}, V_{OFS} \rightarrow GNDA$
 - V_{inD} , V_{ddD} , V_{rextD} , V_{refD} , V_{ref_ovp} → GNDD

- **C** The tested CROCs are mounted on Bonn SCC
- **C** SCC local ground configuration modified for serial powering chain:
 - ✓ Remove: R_GND_BDAQ, R_VDDD_SNS, R_GND_SNS, R_SCAN
 - \checkmark Open PMTM on DEBUG jumper

Current sharing

- **C** Bench commercial standard PS (ramps not configurable)
- **Control** Single power channel for both analog and digital domain
- **O** Current probe to verify proper current sharing

TREDI 2023

Feb, 28th

Avoid HV on LV off

Point A to virtual GND only when FE is powered.

In Serial Powering GND here is just a "local" GND