Test Beam Results of planar pixel quad modules and spatial resolution of 3D pixels for the Phase-2 CMS Tracker

> Martina Manoni Università & INFN Milano Bicocca On behalf of the CMS Tracker Group

18th 'Trento' Workshop on Advanced Silicon Radiation Detectors

The CMS Inner Tracker upgrade for the High Luminosity-LHC

HL-LHC operation conditions	Sensor design constraints
Luminosity $7.5 \times 10^{34} / (\text{cm}^2 \cdot \text{s}) \rightarrow \text{up to } 200 \text{ events} / 25 \text{ ns}$ bunch crossing	Maintain occupancy at ∞ level and increase spatial resolution \rightarrow pixel size x6 smaller than present pixels $\rightarrow 25 \times 100 \ \mu m^2$ (current detector in CMS $100 \times 150 \ \mu m^2$)
CMS baseline choice: at least one replacement of innermost layer of TBPX (at integrated fluence $\approx 1.9 x 10^{16} n_{eq}/cm^2$, end of "Run 5", i.e. after ≈ 6 years of operation) and inner ring of TEPX	Reduce electrodes distance to increase electric field and thus the signal \rightarrow thin planar or 3D columnar technologies

250

Sensor main features:

• Two types of hybrid pixel modules: 1x2 and 2x2 CMS readout chips (CROCs) per module

• Planar sensors $25x100 \ \mu m^2 \ x \ 150 \ \mu m$ active thickness, sensors baseline choice for whole Inner Tracker except for barrel layer 1

• 3D sensors $25x100 \ \mu m^2 \ x \ 150 \ \mu m$ active thickness, baseline choice for barrel layer 1 (better thermal performance than planar)

TFPX

z[mm]

4 0

Planar quad module cell geometry

FNAL Test Beam December 2022

DUT

Beam test performed at Fermilab Test Beam Facility with 120 GeV protons

We took data with a planar quad barrel module. The sensor was NOT irradiated

TELESCOPE SET UP:

- 5 Strip planes (60 μ m pitch) and 4 Pixel planes (25x100 μ m pitch, read out by RD53A \rightarrow only linear front end)
- Telescope resolution ($\sigma_{TEL} \approx 4 \mu m$)
- Device Under Test (DUT) quad module (illuminated area 7x7mm²)
 - Planar Hamamatsu quad module (active thickness $150 \ \mu m$) read out by 2x2 CROCs
 - CROCs operated in sync mode and using external accelerator clock (for the first time)

TRACK SELECTION AND HIT ASSOCIATION:

- tracks with hits on all strip planes and hits on 2 pixels planes at least
- track fit $\chi^2/dof < 5$
- hits associated with tracks on DUT within $300\,\mu m$

Pixel plane

- Performed calibration and equalization of the thresholds of all pixels within a CROC
- Pulse height curves fitted with a linear fit below saturation
- Threshold and noise were determined by performing a charge injection scan (S-curve)
 <threshold> ≈ 1100 1200 electrons
 <noise> ≈ 90 100 electrons

Charge distribution for clusters of size 2 Dut

14000

12000

10000

8000

6000

4000

2000

5000

Entries

hLandauClusterSize2 Dut0

809917

2933

1.176e+04

 710.8 ± 2.8

 1209 ± 4.5

1.544e+04 / 161

1.002e+04 ± 3.182e+00

8.654e+07 ± 9.992e+04

40000 45000 50000

Entries

Mean

Std Dev

 χ^2 / ndf

Width

MPV

Area

MPV expected for

active thickness of

 $150 \,\mu m = 10600 \,e^{-1}$

GSigma

The fit function is a Landau convoluted with a Gaussian

10000 15000 20000 25000 30000 35000

Noise (AVCal)

Residuals 25x100 μm^2 cells

Y residuals 25x100 μm^2

Study of Y residuals for areas between coupled and non coupled pixels

When tracks pass trough the area where pixels are coupled we expect regular charge sharing.

The residual distribution evaluated between pixel 0 and 1 (or 2 and 3) show a single peak as expected.

When tracks pass trough the area where pixels are not coupled (between pixel 1 and 2) the residuals are pushed outwards because the neighbors cells (cell 0 and 3) also lights up. This results in a double peaked distribution.

Cluster size 25x100 μm^2

At high bias voltage the **cluster size is higher** at the intersection of **non coupled pixels**

When a particles passes through the area where the <u>pixels</u> <u>are not coupled</u> there is regular charge sharing between pixels 1 and 2

On top of regular charge sharing adjacent pixels might light up as a result of cross talk

This results in an increased cluster size in this area

Cluster size 2 hits are \approx 78% of the total

Schematic drawing of a 1x4 pixel grid of the DUT (left) and corresponding cluster size map (right)

Residuals 25x225 μm^2

Y residuals 25x225 μm^2

Study of Y residuals for areas between coupled and non coupled pixels

When tracks pass trough the area where pixels are coupled we expect regular charge sharing.

The residual distribution evaluated between pixel 0 and 1 (or 2 and 3) show a single peak as expected.

When tracks pass trough the area where pixels are not coupled (between pixel 1 and 2) the residuals are pushed outwards because the neighbors cells (cell 0 and 3) also lights up. This results in a double peaked distribution.

Residuals 87.5x100 μm^2

Y residuals 87.5x100 μm^2

Y residuals split by cluster size 87.5x100 μm^2

Hit efficiency studies

Efficiency for the 8 special central cells (87.5x225 μm^2)

Efficiency of all illuminated area of the module

Mean efficiency for quad module averaged over all illuminated area: 99.895 ± 0.003 % at 100 V bias

The efficiency is > 99.8% even with $V_{\text{bias}} = 20V$

3D sensors - CERN Test Beam November 2022

3D pixel sensors (25x100 μ m²)

- Made by the FBK foundry in Trento, Italy, in collaboration with INFN
- Sensors equipped with the CROC
- Modules irradiated up to an equivalent fluence of 1 x 10^{16} neq/cm²

Test Beam performed at CERN test beam facility with 75 GeV protons

TELESCOPE SET UP: See talk

See talk by Clara Lasaosa

• 5 planar pixels telescope planes (13x13 μ m²), 3 DUTs planes (3D pixel sensor with 25x100 μ m² pitch read out by CROC) and 1 reference plane

TRACK SELECTION AND HIT ASSOCIATION:

- tracks with hits on 5 (4 mimosa26+reference) telescope planes
- hits associated with tracks on DUT within 135x35 μm^2 ellipse
- track fit $\chi^2/dof < 10$

3D sensors - Resolution vs. Turning Angle

- The module was turned around the short pitch 25 μ m coordinate
- Telescope resolution σ_{TEL} (≈ 6.9 µm) was subtracted in quadrature from the DUT residual
- Reached \approx 5 µm for all tested modules \rightarrow well below digital resolution
- Minimum of spatial resolution obtained around 9° tilt angle

CROC Spatial Resolution: about 5 μ m at 1 x 10¹⁶ n_{eq}/cm²

Summary

The quad planar module read out by 4 CROCs is the first module of its kind to be tested for CMS phase 2

- Very encouraging efficiencies performances even for **non-standard pixels cell** in the inter-chip region
- Studied biases of position estimates due to cross talk in standard and non-standard pixel cells → offline correction foreseen
- These studies will be complemented with laboratory measurements to evaluate the cross-talk of standard and non-standard cells

Future plans:

- More double and quad modules will be tested in the near future, before and after irradiation
- More accurate efficiencies studies are foreseen to better understand the performances

3D pixels modules are confirmed to be used for the inner layers of the silicon trackers to be built for the HL-LHC.

• After irradiation up to a fluence of $1 \times 10^{16} \text{ n}_{eq}/\text{cm}^2$ we measured an hit resolution of about 5 μ m

Future plans:

• New test beam campaigns are foreseen with sensors irradiated at higher fluences

BACK UP SLIDES

Quad module cell Geometry

660 E

Colur660

23

Alignment

-3

-2

-1

0

2

3

5

Y Pull

Pulls for telescope strip plane and pixel plane closer to the DUT

25x100 μm²

No asymmetry observed for Y residual distribution for the top half and bottom half of the cells

25x100 μm²

No asymmetry observed for Y residual distribution for the top half and bottom half of the cells

2D map of Y Residuals 25x100 μm^2

Confirms the absence of asymmetry for Y residual distribution for the top half and bottom half of the cells

Schematic drawing of a 1x4 pixel grid of the DUT (left) and corresponding average Residuals map (V bias=100V) (right)

Efficiency studies 25x225 μm^2

point form the divide between two pixel cells along the short and long pitch

Efficiency studies 87.5x100 μm^2

Efficiency as a function of the track impact point form the divide between two pixel cells along the short and long pitch

87.5x100 μm^2

At high bias voltage (100V) the cluster size is higher at the intersection of non coupled pixels

When a particles passes through the area where the <u>pixels</u> <u>are not coupled</u> there is regular charge sharing between pixels 1 and 2.

On top of regular charge sharing adjiacent pixels might light up.

This results in an increased cluster size in this area.

Schematic drawing of a 1x4 pixel grid of the DUT (left) and corresponding cluster size map (Vbias=100V) (right)

In-pixel Cluster Size - 4 pixel matrix Dut0

Charge spectrum 87.5x100 μm^2

Charge spectrum 87.5x100 μm^2

