First test beam results of HPK planar pixel sensors with the CROC readout chip for the CMS Phase 2 Upgrade

Massimiliano Antonello

On behalf of the CMS Tracker Group SPONSORED BY THE

Federal Ministry of Education and Research

18th "Trento" Workshop on **Advanced Silicon Radiation Detectors** FBK, Trento 28-02-2023

The CMS Inner Tracker for the Phase 2 Upgrade

For the HL-LHC phase, the CMS Inner Tracker (IT) system will be entirely upgraded^[1] **Detector layout:**

- Only two types of hybrid pixel modules = complexity reduced & flexible management of spares 1156 1x2 pixel modules:
 - 2 readout chips (ROCs) per module
 - dimension: roughly $1.8 \times 4.4 \text{ cm}^2$
 - 2736 2x2 pixel modules:
 - 4 ROCs per module
 - dimension: roughly $3.7 \times 4.4 \text{ cm}^2$

- Coverage extended up to $|\eta| = 4$ = improved sensitivity in corners of the phase space important for the HL-LHC precision & discovery physics program

- Innermost layer @ 3 cm from the beamline = max dose of 19.1 MGy but same occupancy as in current Phase 1 detector (10-4)

Fluence scenario and sensor requirements

The new **HL-LHC** upgrade environment:

- Luminosity @ 7.5 x 10^{34} cm⁻²s⁻¹, with an integrated luminosity of 4000 fb⁻¹ (10x times more than Phase 1)
- Pile-up to $\langle \mu \rangle = 200$ (5x times more than Phase 1)

Final chip (CROC) validated up to $\Phi_{eq} = 2.0 \times 10^{16} \text{ cm}^2$: replacement of layer 1 of the barrel required

Some planar sensor design constraints:

- High radiation tolerance: largest average fluence for TFPX ring 1 is $\Phi_{eq} = 1.3 \times 10^{16} \text{ cm}^{-2}$ (dose of 8.1 MGy)
- Avoid cluster merging & keep the occupancy below 10-4: from 100 x 150 μ m² to 25 x 100 μ m²
- High single hit reconstruction efficiency: $\varepsilon_{hit} > 98\%$ for L1 and $\varepsilon_{hit} > 99\%$ for L2-LA (end of lifetime)
- High spatial resolution: $\sigma_{hit} < pitch/\sqrt{12}$
- No thermal runaway

💶 Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUN

<u>The planar sensor baseline design</u>

Baseline design chosen:

✓ Hybrid pixel detectors = powerful solution in terms of readout speed & radiation tolerance

✓ **n-in-p** planar sensors for all but first barrel layer:

- **Single sided** processing (front-side only) = less prod. steps & lower cost
- $-25 \times 100 \ \mu m^2$ cell size
- Inter-chip regions with **long** pixels (for both 1x2 and 2x2 modules)
- **Parylene coating** of the module = spark protection
- No punch through bias (higher ε)^[1]

✓ No n⁺ implant under metal to reduce crosstalk

Bitten implant design

- Active thickness: 150 μ m (from 285 μ m) = higher rad. hardness & lower V_{bias} for high ϵ (lower power dissipation)

All sensors bonded to **RD53** chips^[1]:

- 65 nm CMOS technology (TSMC), radiation hard design
- $-50 \ge 50 \ \mu m^2$ pixel pitch
- Adjustable online threshold: below 1000 e-
- Charge digitization via 4-bit Time-over-Threshold (ToT unit)

<u>Main improvements from RD53A (Linear FE) to CROC (CMS Read-Out Chip)</u>:

- Increased TDAC circuit dynamic range (with an extra 5^{th} bit) > to compensate for saturation at low temperatures
- Improved **cluster charge** estimation —> with dual slope ToT (under test)

[1] RD53 Collaboration (Link)

Readout chips

All the RD53 chips for CMS:

- **RD53A**: half-size module demonstrator with 3 FE designs
- **RD53B_CMS/CROC**: full-size pre-production chip (only LIN FE)
- **RD53C**: full-size production final chip

DESY II test beam setup

All data taken at TB21/22 areas:

- Electron/positron beam
- Energies: from 1 to 6 GeV (data @ 5.2 or 5.6 GeV)
- Trigger: two upstream scintillators (2x1 cm² overlap)
- Tracking: EUDET DATURA/DURANTA Telescope^[1] $6 \text{ MIMOSA-26 planes}^* (t_{int} = 115 \ \mu s)$
- Timing layer: CMS Phase 1 or CROC 50x50 µm²
- Device Under Test (DUT): cold box (T ~ -20/-10°C)

Irradiation:

RD53A: 23 MeV protons at ZAG Zyklotron AG Karlsruhe (KIT) **CROC:** 24 GeV protons at Proton Irradiation Facility (PS_IRRAD CERN)

Characterization procedure:

- Lab measurements: I-V
- Test beam measurements:
- Hit efficiency for various bias voltages, angles, temperatures and fluences
- Single hit resolution for various angles, bias voltages, thresholds, temperatures and fluences
- Chip ToT operation mode studies

Requirements:

- Breakdown: > 300 V before irradiation (for optimal resolution)

> 800 V after irradiation to $\Phi_{eq} = 0.5 \times 10^{16} \text{ cm}^{-2}$ & beyond

Results: breakdown

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Results: breakdown

Requirements:

Results:

- ✓ No sign of breakdown up to 800 V during the beam tests

*Low statistic for these tests: mean pixel occupancy ~ 5 hits

PRELIMINARY **RESULTS**

701: **PT** 25 um x 100 um -30 30 40 50 in-pixel x_{track} [µm] -20 -40 -10 20 10 ← 702: 50 um x 50 um -15 –10 –5 0 15 20 704: 50 um x 50 um → -25 -25 -20 -15 -10 -5 0 5 10 15 20 in-pixel x [µm

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Results: hit efficiency

Requirements:

 $\epsilon_{hit} = \frac{N_{tracks}^{DUT}}{1}$

Ntotal track

- Hit efficiency: $\epsilon_{hit} > 99\%$ before irradiation (vertical incidence @ V_{bias} = V_{dep} + 50 V and 20°C) $\epsilon_{\text{hit}} > 99\%$ after irradiation to $\Phi_{\text{eq}} = 0.5 \text{ x } 10^{16} \text{ cm}^{-2}$ (vertical incidence @ V_{bias} $\leq 600 \text{ V}$ and -20°C) $\epsilon_{\text{hit}} > 98\%$ after irradiation to $\Phi_{\text{eq}} = 1.0 \text{ x } 10^{16} \text{ cm}^{-2}$ (vertical incidence @ V_{bias} $\leq 800 \text{ V}$ and -20°C)

Before irradiation*

CROC results

Non-irradiated: Online threshold^{**} ~ $1200 e^{-} - T \sim +25^{\circ}C$ $\checkmark \epsilon_{\text{hit}} > 99\%$ for $V_{\text{bias}} > 5 V$

RD53A results

Non-irradiated:

Online threshold^{**} ~ 1400 e⁻ - T ~ $+25^{\circ}$ C

 \checkmark Ehit > 99% for V_{bias} > 5 V

PRELIMINARY RESULTS

** Exp. deposited charge for a MIP in 150 µm Si before irr. ~ 11000 e-

Results: hit efficiency

Requirements:

$$\epsilon_{hit} = \frac{N_{tracks}^{DUT}}{N_{tracks}^{total}}$$

- Hit efficiency: $\epsilon_{hit} > 99\%$ before irradiation (vertical incidence @ V_{bias} = V_{dep} + 50 V and 20°C) $\epsilon_{\text{hit}} > 99\%$ after irradiation to $\Phi_{\text{eq}} = 0.5 \text{ x } 10^{16} \text{ cm}^{-2}$ (vertical incidence @ V_{bias} $\leq 600 \text{ V}$ and -20°C) $\epsilon_{\text{hit}} > 98\%$ after irradiation to $\Phi_{\text{eq}} = 1.0 \text{ x } 10^{16} \text{ cm}^{-2}$ (vertical incidence @ V_{bias} $\leq 800 \text{ V}$ and -20°C)

After irradiation*

CROC results $\Phi_{eq} = 1.0 \text{ x } 10^{16} \text{ cm}^{-2}$ Online threshold^{**} ~ $1200 e^{-} T \sim -20^{\circ}C$ \checkmark ϵ_{hit} > 99% for V_{bias} > 400 V

RD53A results

 $\Phi_{eq} = 0.8 \times 10^{16} \text{ cm}^{-2}$ Online threshold^{**} ~ 1400 e⁻ - T ~ -25° C \checkmark E_{hit} > 99% for V_{bias} > 350 V

PRELIMINARY RESULTS

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

** Exp. deposited charge for a MIP in 150 µm Si before irr. ~ 11000 e-

Results: efficiency*acceptance

* For a single pixel noise occupancy threshold of $2 \ge 10^{-5}$

PRELIMINARY RESULTS

Hit spatial resolution

- RMS_{trc} = truncated RMS from DUT residual distribution*: outliers effect on RMS suppressed calculating it with iterative** ~ method, discarding values outside of ± 3 RMS_{trc}
- σ_{TEL} = telescope resolution

n:
$$\sigma_{hit} = \sqrt{RMS_{trc}^2 - \sigma_{TEL}^2}$$

** Considered range converges with few iterations & contains > 98% of residual distribution entries

Results: spatial resolution

Requirements:

- Best single point **resolution**: $\sigma_{\rm hit} < 25/\sqrt{12} \sim 7.2 \,\mu{\rm m}$

After irradiation*

CROC results

 $\Phi_{eq} = 1.0 \text{ x } 10^{16} \text{ cm}^{-2}$ Online threshold^{**} ~ $1200 e^{-} T \sim -20^{\circ}C$ \checkmark o_{hit} better than: o_{binary} = 7.2 µm ✓ Cluster size above 1

RD53A results

 $\Phi_{eq} = 0.8 \times 10^{16} \text{ cm}^{-2}$ Online threshold^{**} ~ 1400 e⁻ - T ~ -25° C \checkmark σ_{hit} better than: $\sigma_{binary} = 7.2 \ \mu m$ ✓ Cluster size above 1

PRELIMINARY RESULTS

$r-\phi$ (25 µm direction)

** Exp. deposited charge for a MIP in 150 µm Si before irr. ~ 11000 e-

Results: spatial resolution

Requirements:

- Best single point **resolution**: $\sigma_{\rm hit} < 100/\sqrt{12} \sim 28.9 \ \mu {\rm m}$ θ_{turn} independent

z (100 µm direction)

After irradiation*

CROC results

 $\Phi_{eq} = 1.0 \text{ x } 10^{16} \text{ cm}^{-2}$ Online threshold^{**} ~ $1200 e^{-} T \sim -20^{\circ}C$ \checkmark σ_{hit} better than: $\sigma_{binary} = 28.9 \ \mu m$ \checkmark Cluster size still above 1

RD53A results

 $\Phi_{eq} = 0.8 \times 10^{16} \text{ cm}^{-2}$ Online threshold^{**} ~ 1400 e⁻ - T ~ -25° C \checkmark σ_{hit} better than: $\sigma_{binary} = 28.9 \ \mu m$ \checkmark Cluster size still above 1

PRELIMINARY **RESULTS**

** Exp. deposited charge for a MIP in 150 µm Si before irr. ~ 11000 e-

The preliminary analysis of the characterization campaign for the planar HPK sensors with the RD53B_CMS/CROC chip results in:

- Excellent production yield
- Very good electrical behavior before and after irradiation (breakdown always > 800 V)
- Hit efficiency and acceptance ~ 99% also for modules with Φ_{eq} up to 1.0 x 10¹⁶ cm⁻²
- Resolution along the r- ϕ (25 µm) direction always < 25/ $\sqrt{12}$ ~ 7.2 µm
- Resolution along the z (100 µm) direction always < $100/\sqrt{12} \sim 28.9$ µm

Analysis is still ongoing, more results will be available in the next months: spatial resolution for non-irradiated modules, dual slope ToT test, chip performance in cold, ...

Outlooks

- Transition to sensor production phase —> wafer design for kickoff batch submitted to HPK
- First irradiated quad module to be tested on beam later this year

Other CMS Inner Tracker talks

Martina Manoni: Antonio Cassese:

"Test beam results of planar pixel quad modules and spatial resolution of 3D pixels for the Phase 2 CMS Tracker" Clara Lasaosa Garcia: "Test Beam Results of 3D pixel sensors for the Phase 2 CMS Tracker with the RD53A and CROC readout chips" "Serial powering for the CMS Inner Tracker detector at High Luminosity LHC"

Good agreement with **RD53A results**

Additional slides

For the preliminary analysis of CROC modules resolution, the telescope resolution was calculated using a dedicated tool:

GBL Track Resolution Calculator 2.0^[1]

- developed for EUDET-type beam telescopes performances studies^[2]
- use the General Broken Lines formalism
- scattering in materials estimated via the PDG Highland formula

All the planes and the material budget considered:

Results for the "not irradiated" setup agree with the telescope resolution measured for the RD53A campaign within 0.4 µm

[1] GBL Track Resolution Calculator v2.0 (Link)

Telescope resolution

DER FORSCHUNG | DER LEHRE | DER BILDUNG

All the different planar sensor design tested:

"Standard" design

X

[1] GBL Track Resolution Calculator v2.0 (Link)

X

The planar sensor designs

"Standard" design 50x50 µm²

"Standard" design with bias dot

[2] H. Jansen, S. Spannagel et al. "Performance of the EUDET-type beam telescopes"(<u>Link</u>)

Single hit spatial resolution

Hit spatial resolution

- ~
- σ_{TEL} = telescope resolution: no cold box: extracted as residual distribution of triplets & driplets extrapolation @ DUT with iterative method within ± 3 RMS_{trc}: $\sigma_{TEL}^x = RMS_{trc}/2cos(\theta_{Turn})$, $\sigma_{TEL}^y = RMS_{trc}/2cos(\theta_{Tilt})$ cold box: extrapolated from linear fit of dedicated measurements with fresh 612 ($\sigma_{DUT} = 5.32 \pm 0.04 \mu m$) $\sigma_{TEL} = m_{E_{beam}}(dz_{DUT}) + q_{E_{beam}}$ (fits available for E_{beam} = 5.2 & 5.6 GeV)

* After event selection cuts

on:
$$\sigma_{hit} = \sqrt{RMS_{trc}^2 - \sigma_{TEL}^2}$$

RMS_{trc} = truncated RMS from DUT residual distribution*: outliers effect on RMS suppressed calculating it with iterative** method, discarding values outside of ± 3 RMS_{trc}

** Considered range converges with few iterations & contains > 98% of residual distribution entries

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Increased TDAC circuit **dynamic range** (with an extra 5th bit) to compensate for saturation at low temperatures

<u>CROC main improvements</u>

💶 Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Increased TDAC circuit **dynamic range** (with an extra 5th bit) to compensate for saturation at low temperatures

<u>CROC main improvements</u>

Noise impact on hit efficiency

- A sizable increase of the occupancy would affect the system negatively:
- Saturating the available bandwidth
- Increasing the tracking complexity (fake tracks)

Noise requirements for Phase 2 IT modules:

- Reference single pixel noise occupancy threshold sets as the most stringent one: TEPX layers (10-4 hit occupancy)
 - Pixels masked if they had > 1000 hits in 10⁷ triggers ✓ good if: # of masked pixel <1% of the total # of pixels
- Average noise occupancy of un-masked pixels measured ✓ good if: mean noise occupancy < 10-6

Simulation of the hit occupancy as a function of pseudorapidity for all IT layers and double disks for top quark pair production events with 200 events pileup [1]

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUN

<u>3D sensors for TBPX L1</u>

For the **"ultimate luminosity scenario"**: min. T_{CO2} reachable underneath the module: -33°C

From power dissipation simulations for L1, to avoid sensors thermal runaway:

- Planar sensors: the required T_{CO2} is much lower than -33°C
- 3D sensors: more than 4°C margin (confirmed power dissipation below 20 mW/cm² also after $\Phi_{eq} = 2.0 \times 10^{16} \text{ cm}^{-2}$)

Two contributions from 17th "Trento" Workshop on Advanced Silicon Radiation: (link)

- G. Bardelli:

"Test Beam results of FBK 3D pixel sensors interconnected to RD53A readout chip after high irradiation"

- S. J. Dittmer:

"Study of irradiated CNM 3D sensors"

RD53A

Test Pulse Measurements on RD53A modules:

- Send test pulse to all pixels (consecutively)
- Count the number of pixels above threshold
- Find the amplitude µ₅₀ required for 50% occupancy
- Calculate the crosstalk x:

$$x = \frac{r}{r+1}$$
 with: $r = \frac{\mu_{50}}{\mu_{150}}$

Results (similar chip settings, thresholds):

- non-bitten: x = 14%
- bitten: x = 8%

Crosstalk considerably reduced (residual effects can be corrected in offline reconstruction)

Results: crosstalk

Results: spatial resolution

Requirements:

- Best single point **resolution**: $\sigma_{\rm hit} < 25/\sqrt{12} \sim 7.2 \ \mu m$

Results* before irradiation: Online threshold^{**} ~ $1250 e^{-} T \sim +25 °C$ $\Phi_{eq} = 0.0 \text{ x } 10^{16} \text{ cm}^{-2}$: V_{bias} = 120 V Optimal angle: tan⁻¹(25/150) ~ 9.5°

 $\checkmark \sigma_{hit} \sim 2 \mu m$ @ cluster size = 2

Results* after irradiation: Online threshold ~ $1250 e^{-} - T \sim -25^{\circ}C$

 $\Phi_{eq} = 0.8 \times 10^{16} \text{ cm}^{-2}$: V_{bias} = 600 V $\Phi_{eq} = 1.2 \times 10^{16} \text{ cm}^{-2}$: V_{bias} = 800 V $\Phi_{eq} = 2.0 \times 10^{16} \text{ cm}^{-2}$: V_{bias} = 800 V

 $\checkmark \sigma_{\text{hit}}$ better than: $\sigma_{\text{binary}} = 7.2 \ \mu \text{m}$ ✓ Cluster size still above 1

** Exp. deposited charge for a MIP in 150 µm Si before irr. ~ 11000 e-

Results: spatial resolution

Requirements:

- Best single point **resolution**: $\sigma_{\rm hit} < 100/\sqrt{12} \sim 28.9 \ \mu m$

Results* before irradiation: Online threshold^{**} ~ $1250 e^{-} T \sim +25 °C$ $\Phi_{eq} = 0.0 \text{ x } 10^{16} \text{ cm}^{-2}$: V_{bias} = 120 V

 $\checkmark \sigma_{hit}$ independent of the turn angle \checkmark or or or other than: $\sigma_{\text{binary}} = 28.9 \,\mu\text{m}$

Results* after irradiation:

Online threshold ~ 1250 e⁻ - T ~ -25°C

 $\Phi_{eq} = 0.8 \times 10^{16} \text{ cm}^{-2}$: V_{bias} = 600 V $\Phi_{eq} = 1.2 \times 10^{16} \text{ cm}^{-2}$: V_{bias} = 800 V $\Phi_{eq} = 2.0 \times 10^{16} \text{ cm}^{-2}$: V_{bias} = 800 V

 $\checkmark \sigma_{hit}$ better than: $\sigma_{binary} = 28.9 \ \mu m$ ✓ Cluster size still above 1

30

* Excluding effects coming from readout chain

** Exp. deposited charge for a MIP in 150 µm Si before irr. ~ 11000 e-

Hit efficiency of bias dot design

- Sensors with PT bias dots do not reach $\varepsilon_{hit} > 98\%$ and do not meet the requirement of 99% @ perpendicular incidence
- Similar hit efficiencies in the **central region** of the pixel
- Efficiency loss @ the bias dot position to 80%

💶 Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Telescope:

- Triplets absolute slope > 5 mrad
- Residual @ triplet middle plane: $|x_{extr} x_B| \ge 50 \ \mu m$
- Residual for sixlets @ DUT plane: $|x_{tri} x_{dri}| \ge 30 \ \mu m$ (if no box)

DUT Residuals: (+ masked tracks*)

- C1 fake tracks: for 25 µm: $|\Delta_{DUT}^{100}| \ge 2 \times 100 / \sqrt{12}$ µm, for 100 µm: $|\Delta_{DUT}^{25}| \ge 2 \times 25 / \sqrt{12}$ µm
- C2 timing link: $|\Delta_{MOD}^x| \ge 150 \text{ µm or } |\Delta_{MOD}^y| \ge 150 \text{ µm}$
- C3 isolation @ MOD: $r_{tele}^{@MOD_{1-2}} = \sqrt{(x_{tele}^{@MOD_1} x_{tele}^{@MOD_2})^2 + (y_{tele}^{@MOD_1} y_{tele}^{@MOD_1})^2} \le 600 \,\mu\text{m}$
- C4 residual pairing: finding the correct pair of events in DUT & telescope
- C5 (requires C2) fiducial region: rot 0: $|y_{tele}^{@DUT}| > 4.7 \text{ mm } \& x_{tele}^{@DUT} > 3.1 \text{ mm } \& x_{tele}^{@DUT} < -3.5 \text{ mm}$
- C6 isolation @ DUT: $r_{DUT}^{clust_{1-2}} = \sqrt{(x_{DUT}^{clust_1} x_{DUT}^{clust_2})^2 + (y_{DUT}^{clust_1} y_{DUT}^{clust_1})^2} \le 600 \,\mu\text{m}$
- C7 BC: minbc < 8 & maxbc > 12
- C8 (requires all the other cuts) cluster charge: $Q > Q_{H10\%}$

Efficiency:

- Cuts: C2 (timing link) + C3 (isolation @ MOD) + C5 (fiducial region) + masked tracks*
- Hit matching: $r_{min} = \sqrt{(x_{TEL} x_{DUT}^{min})^2 + (y_{TEL} y_{DUT}^{min})^2} > 200 \,\mu\text{m}$

All cuts are independent but:

C4 requires C2 & C8 requires all the others

Event selection cuts

Cluster Discarded Accepted Acceptance region X B

rot 90: $|x_{tele}^{@DUT}| > 4.7 \text{ mm } \& y_{tele}^{@DUT} > 3.5 \text{ mm } \& y_{tele}^{@DUT} < -3.1 \text{ mm}$

0

Off-line noise extrapolation

An example: real run with beam with 5 x 10⁵ events, 32 BC recorded for each event (25 BC without the beam), single pixel noise occupancy of 1 x 10⁻⁴ (L4 occ. thr)
—> A "noisy" pixel is masked if counts more than: (5 x 10⁵) x (25) x (1 x 10⁻⁴) = 1250 hits
—> Average noise occupancy : N^{hits}_{unmasked} / [(5 x 10⁵) x (25) x N_{unmasked}]

Noisy: 48 pixels above 1250 hits (0.01%) noisemap: Occupancy map from raw data (25 BC)

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Off-line noise extrapolation

An example: real run with beam with $5 \ge 10^5$ events, 32 BC recorded for each event (25 BC without the beam), single pixel noise occupancy of $1 \ge 10^{-4}$ (LA occ. thr) -> A "noisy" pixel is masked if counts more than: (5 x 10⁵) x (25) x (1 x 10⁻⁴) = 1250 hits \rightarrow Average noise occupancy : $N_{unmasked}^{hits} / [(5 \ge 10^5) \ge (25) \ge N_{unmasked}]$

> Noisy: 48 pixels above 1250 hits (0.01%) **noisemap:** Occupancy map from raw data (25 BC)

