

ATLAS ITk Pixel Sensor Characterization for the HL-LHC upgrade

Hua Ye on behalf of the ATLAS ITk Collaboration

II. Physikalisches Institut, University of Göttingen

TREDI2023, Trento, 2023.02.28

f and the second second

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

- The High-Luminosity LHC (HL-LHC) is expected to operate with an instantaneous luminosity up to 7.5 x 10³⁴ cm⁻²s⁻¹.
 - Expected about 200 inelastic pp collisions per bunch crossing.
- ATLAS aims to accumulate a total data set of 4000 fb⁻¹ over 10 years operation.
- A new all-silicon Inner Tracker (ITk) will replace the current Inner Detector.
 - A pixel detector surrounded by a strip detector.
 - Targeting the same or better performance than the current Inner Detector.
 - Increased granularity to maintain occupancy <1%.
 - Lower material budget and increased radiation hardness.

ATL-PHYS-PUB-2021-024

ITk Pixel Layout and Pixel Modules

- ITk Pixel detector:
 - 5 barrel layers and multiple inclined or endcap disks, extending to $|\eta|=4.0$.
 - Outer barrel and endcap: n-in-p planar quad modules

r [mm]

- Inner system (replaceable): 3D triplet modules + n-in-p planar quad modules.
- ~9400 modules with ~13 m^2 active area.
- Radiation hard,
 - Inner system up to 2 x 10^{16} n_{eq}/cm².
- Hybrid pixel module
 - Passive high resistivity silicon sensor + front-end (FE) readout chip fabricated in 65nm CMOS technology.
- Currently in pre-production stage.
 - ~10% sensor production.
 - Sensors and test structures are tested for quality checks and compare with the test results provided by vendors.

Quad module x-sec.

Pixel Sensor

- Planar sensors
 - Outer layers: 150µm thick sensors with pitch size of 50x50µm².
 - Inner system L1: 100µm thick sensors with pitch size of 50x50µm².
 - Various detailed designs from vendors, requirements defined on performance.
 - Insulation: p-stop vs. p-spray
 - Polysilicon bias or punch-through
 - Guard-ring geometry
- 3D sensors in Inner system L0:
 - 25x100 µm² in the barrel.
 - 50x50 μ m² in the endcap.

Punch-through bias rail

25×100 µm², 1E

25 µm

100 µm

~52 µm

Guard-ring

- The wafer holds the sensors and test structures to perform quality checks.
 - Diodes reproduce the electrode structure of the actual sensors.
 - Strips pixel implants connected in rows and routed to periphery.
 - Mini sensor matrix, inter-pixel capacitance structures ...
 - Leakage current, bulk capacitance, inter-pixel resistance, capacitance etc. are tested (sensor quality assurance)

- I-V curves measured on sensors and diodes, before and after irradiation.
 - Un-irradiated tiles measured at (20±2)°C, RH<50%, reverse bias applied up to -200V or until breakdown reached in step of 5V, with a delay time of 2s.

150µm Planar quad sensors (un-irradiated)

Breakdown voltage (V_{bd}): $\frac{I_{leak}@(V_{bias}+10V)}{I_{leak}@(V_{bias}+5V)} > 1.2$

Criteria (un-irradiated quad sensors):

- $V_{bd} > V_{depl} + 70V$
- $I_{leak}@(V_{depl} + 50V) < 0.75 \ \mu A/cm^2 \rightarrow 12.2 \ \mu A$

- Some sensors and test structures are irradiated to 5×10^{15} or 2×10^{15} n_{eq}/cm² to verify the radiation hardness.
 - Irradiated sensors measured at -25°C, up to -400 (-600) V for 100 (150) μm thick sensors or until breakdown.

- Criteria for 100 (150) μ m thick quad sensors irradiated to 5x10¹⁵ n_{eq}/cm²:
 - $I_{leak} < 35 (45) \ \mu A/cm^2 \rightarrow 570 (730) \ \mu A$

FBK 3D: Temporary metal grid is realized on sensors and removed once the electrical tests are complete.

reverse bias applied up to -100V or until breakdown reached in step of 1V,

50x50 μm^2 , with temporary metal, un-irradiated

- Long-term stability of leakage current is studied by applying a typical operation bias voltage for 48h.
 - Criteria: $\frac{I_{max} I_{min}}{I_{average}} < 25\%$

excluding the first 10 minutes after ramping up.

HPK diodes (un-irradiated)

FBK 3D (un-irradiated)

Micron 100 μ m thick quad sensor shows unstable I_{leak}.

- Possible surface effect at oxide layer.
- Still in discussion, acceptable for using in detector.
- Stability gets improved after extra baking (125°C for 16h) or after irradiation.
- Statistics is limited.

- C-V measurements are performed to determine the full depletion voltage (V_{depl}) of wafer.
 - Measured with a LCR meter coupled to an external voltage source.
 - $V_{\mbox{\tiny depl}}$ is obtained from the intersection of linear fits of the ramping and plateau region of $1/C^2$ plot.

Inter-pixel Resistance

HPK strips test structures

- Inter-pixel resistance was measured to verify the wafer and implantation quality.
 - The resistance is measured by probing the neighboring strips and applying voltage.
 - Specification depends on the bias structures.
 - $R_{interpix} > 2 M\Omega$ per pixel cell for poly-Si resistors,
 - otherwise $R_{interpix} > 20 M\Omega$ per pixel cell.

- FBK 3D
 - Two neighboring strips were shorted and a systematic voltage sweep was applied between -3 to 3V.
 - Criteria: $R_{interpix} > 1 G\Omega$ per 3D pixel cell
 - Measured R_{interpix} is independent to the reverse bias voltage.

- A new all-silicon Inner Tracker (ITk) will replace the current Inner Detector in ATLAS for the HL-LHC upgrade. The ITk pixel detector consists of ~9400 hybrid modules with planar n-in-p sensors and 3D sensors.
- ITk pixel project is currently in pre-production, ~10% of sensor production are measured for quality assurance.
- Sensors and test structures from different vendors were measured, both before and after irradiation.
 - Leakage current level and stability, bulk capacitance, inter-pixel resistance were checked and found within the ATLAS ITk pixel sensor specification.
 - Measured results are consistent with those provided by vendors.