

Ionizing and non-ionizing radiation damage on Silicon Photomultipliers

Fabio Acerbi^{a,b}, A.R. Altamura^a, B. Di Ruzza^c, S. Merzi^a, A. Gola^{a,b}

^a Fondazione Bruno Kessler (FBK), Center for Sensors and Devices, Trento, Italy.
^b TIFPA Trento Institute for Fundamental Physics and Applications, Trento, Italy
^c University of Foggia and INFN Bari

acerbi@fbk.eu

FONDAZIONE BRUNO KESSLER

Single-photon avalanche diode (SPAD) & Silicon Photomultipliers (SiPM)

Silicon Photomultipliers (SiPMs)

 Silicon Photomultiplier (SiPM): large-area, solid-state, single-photon sensitive detectors, with ph-num. resolution, and large dynamic range.

Applications: medical imaging, high-energy physics, biotech, LiDAR, diffuse optics, others.

□ Active areas: 1x1 mm² up to 10x10 mm²

SiPMs in harsh-radiation environments

X- and γ-ray detectors for space experiments (e.g. SIRI2, GMOD, GRID, AMEGO, ...)

Radiation damage in silicon detectors

- □ Bulk (crystal) damage ← non-ionizing energy loss (NIEL)
 - Displacement damage \rightarrow crystal defects, interstitials, vacancies, clusters \rightarrow increased noise.

□ Surface damage ← ionizing energy loss (IEL)

Accumulation of charge in the dielectrics; damage of dangling bonds.

SiPM: IV and noise source

FBK SiPMs technologies → irradiated and tested

 \Box Many different SiPM technologies, tailored for different applications \rightarrow interesting to compare radiation effects.

Proton irradiation: irradiation setups

- □ Proton-therapy center in Trento → IBA cyclotron
- □ "Dual ring setup": 98% uniformity on ~6 cm diameter. \rightarrow 148 MeV source + inhibitor \rightarrow 74 MeV protons
- □ Fluences: $3 \cdot 10^7 n_{eq}/cm^2$, ..., **6.4 · 10¹¹ n_{eq}/cm^2**

Proton irradiation: online IV measurements (in dark)

March 02, 2023

Proton irradiation: dark current and DCR variation

□ DCR (primary SRH generation from the bulk) → estimated from the reverse current: we considered ECF and Gain not changing with irradiation (verified up to $1.10^{11} n_{ed}/cm^2$)

□ Random fluctuations starting at 10⁷ ÷10⁸ n_{eq}/cm²
□ increment of ~4 orders of magnitude at 6.10¹¹ n_{eq}/cm² → DCR: 10⁹ ÷10¹⁰ cps/mm²

Proton irradiation: DCR activation energy

□ Reverse IV measured in the temperature range [-30°C, +30°C]

- 1. Samples not irradiated
- 2. PCB-A (irrad at $1.4 \cdot 10^{10} n_{eq}/cm^2$ + annealing)
- 3. PCB-B (irrad at $6.4 \cdot 10^{11} n_{eq}/cm^2$ + annealing)
- **Reduction of temperature dependence (activation energy) with fluence**
 - → temperature needed to halve the DCR: from \sim 8°C to \sim 15°C.
- \Box Dependence of activation energy on excess bias \rightarrow effect of electric field + possible saturation effects

Proton irradiation: "damage factor"

March 02, 2023

Fabio ACERBI - TREDI 2023

Proton irradiation: functional parameters

□ Functional measurements @ -40°C

- Pulse amplitude;
- Prompt crosstalk probability (calculated considering the pile-up effect at high DCR):
- Responsivity (detection efficiency)

 \rightarrow <u>no relevant variations (up to the investigated fluence)</u>

But: after irradiation \rightarrow high noise \rightarrow loss of ph. num. resolution

X-ray irradiation: irradiation setups

X-ray machine at TIFPA center in Trento

- □ W-anode + Al filter (180um): emission up to $40kV \rightarrow peaks:7.6 12 keV$
- Doses: 69 Gy, , 100 kGy (in Silicon) [dose monitor pre-calibrated in a different setup]

X-ray irradiation: online IV measurements (in dark)

March 02, 2023

Fabio ACERBI - TREDI 2023

X-ray irradiation: dark current

□ Biggest variations on IV curves:

- NUV-HD-lowCT (with abs material in trench)
 - → Electric field modification at the border of AA
- NUV (w/o trench)
 - → Loss of isolations between cells and/or modification of edge electric fields

X-ray irradiation: noise and correlated-noise

\Box Primary DCR increment \rightarrow large spread among tech.

• 0.5 ÷ 2.5 orders of magnitude

□ Big increment of correlated noise (in some SiPMs)

NUV (w/o trench) and VUV-HD (modified ARC)

X-ray irradiation: detection efficiency

350

400

450 500

Measurements of the photon detection efficiency (PDE)

- No variation in the NUV-HD SiPMs (n-type epi/sub.)
- Important variation in the RGB-HD (p-type epi/sub.)

 \rightarrow More important at high wavelengths

650 700 750 800 850

550

900 950

X-ray irradiation: structure modifications

\Box Effect of X-ray irradiation \rightarrow positive charge trapped in dielectric layers (e.g. SiO₂)

- P-type epi → additional electric field peak in depth
 - \rightarrow enhanced border region \rightarrow lower effective FF
- **N-type epi** \rightarrow enhanced electric field close to the trenches (defective region)
 - \rightarrow possible higher DCR and Afterpulsing

Room temperature annealing

Studied room-temperature annealing (Measured 2 times per day for several weeks)

Proton irradiation: exponential decrease (2 slopes)

• Max factor 0.5 recovery \rightarrow need high temperatures

□ X-ray irradiation: exponential decrease (1 slopes)

Much higher DCR recovery

Conclusions

Tested the effect of lonizing and non-ionizing radiation

Fluencies/doses compatible with experiments working in space environments

Protons at 74 MeV, up to 6.10¹¹ n_{eq}/cm²

- more than 4 orders of magnitude increment on primary DCR
- Reduction of activation energy \rightarrow cooling less effective
- No relevant modification of all other SiPM functional parameters

X-ray at 40 keV, up to 100 kGy

- Moderate increment of primary noise (DCR),
- Important modification of the internal electric field profiles and functional parameters of SiPMs:
 - N-type epi/sub structures (p-on-n junction) \rightarrow increment of DCR and afterpulsing probability
 - P-type epi/sub structures (n-on-p junction) → reduction of effective AA, thus of PDE

Ionizing and non-ionizing radiation damage on Silicon Photomultipliers

<u>Fabio Acerbi^{a,b}, A.R. Altamura^a, B. Di Ruzza^c, S. Merzi^a, A. Gola^{a,b}</u>

^a Fondazione Bruno Kessler (FBK), Center for Sensors and Devices, Trento, Italy.
^b TIFPA Trento Institute for Fundamental Physics and Applications, Trento, Italy
^c University of Foggia and INFN Bari

acerbi@fbk.eu