ATLAS ITk FBK 3D sensors 50x50 μm^2 In-Pixel local efficiency after irradiation up to 1.9 x 10^{16} n_{_{eq}} / cm²

G. Calderini, F. Crescioli, G.-F. Dalla Betta, G. Gariano, C. Gemme, S. Hadzic, T. Heim, **S. Ravera**, M. Ressegotti, A. Rummler, Md. A. A. Samy, D M S Sultan, L. Vannoli

TREDI 2023

18th Trento workshop on Advance Silicon Radiator Detectors Trento, 28 February - 2 March 2023

ATLAS Inner tracker towards HL-LHC \rightarrow The ITk

With the HL-LHC program starting in 2026 the luminosity will ramp up to 5-7.5 10³⁴ cm⁻² s⁻¹

the ATLAS Inner tracker will be completely replaced with a new all-silicon (pixel+strip) tracking detector → The ITk

The ITk Pixel detector:

- 5 layers of Pixel detectors:
 - **L2-L3-L4**: Planar sensors (150 μm)
 - L1: Planar sensors (100 µm)
 - L0: 3D sensors
- Pixel Inner System will be replaced after 2000 fb⁻¹

(1.5 safety factor on max fluence)

- Fluence of about 2e16 n_{ed}/cm²
- TID up to 1 Grad

ITk_Final_Layout

S. Ravera

The ITkPix FE Chip will be will be used for all ITk modules

- **Delivered by the RD53 Collaboration**, using the same "library" to finalize the ATLAS and CMS read-out chips
- ITkPixV1.1 chip: patch fixed high current (ToT still not usable)
- ITkPixV2 chip to be submitted in Spring 2023 (final simulation ongoing)

Main ITkPixV1 features:

- 65 nm CMOS, 2x2 cm² area
- 384 x 400 pixels (50x50 μm²)
- Power consumption: 0.56 W/cm²
- Radiation hardness > 1 Grad
- Standard threshold: 1000e (30e dispersion)
- Mean Noise: 40e (FE only) → 80e after sensor bump-bonding

Inner System 3D pixel sensor

ATLAS ITk will use **3D pixels in the Inner System** L0 with 2 different pixel cell dimensions (2x2 cm² tiles):

- $25x100 \ \mu m^2$ in the barrel
- $50x50 \ \mu m^2$ in the endcaps

ATLAS Production is split between:

- CNM (25x100 µm², backup FBK)
- FBK and SINTEF (50x50 µm²)

Pre-production almost completed

- by **FBK in Summer 2021** (50x50 μ m²) \rightarrow **Production**
- by FBK in Summer 2022 (25x100 μm²)
- by SINTEF in February 2022 (50x50 μm²)
- CNM expected delivery: March 2023 (25x100 µm²)

See also J. Carlotto's talk

Λ as a multiplicity of 2D EDK ± 1 TkDiv v1 1 an SCC in Canava	
ASSEMDIV OF STEPRATICKETS VI I OD SUU. ID GEDOVA	

Eight 3D + ITkPixV1.1 single-chip modules assembled in Genova on Single Chip Cards (SCCs)

- Bump-bonded at IZM
- Radiation hardness and performance qualification of single chips

Sensor #	TB before irradiation	Irradiation	Fluence	TB after irradiation	Notes
W12-G	CERN PS & SPS	IRRAD	up to 1.7 x 10 ¹⁶ n _{eq} /cm ²		Magnet issue at IRRAD \rightarrow Not able to test after irradiation
W12-M		Bonn + IRRAD	up to 1.9 x 10 ¹⁶ n _{eq} /cm ²	SPS	
W12-N	CERN PS & SPS				Used as timing reference plane at TBs
W12-J		Bonn + IRRAD	up to 1.9 x 10 ¹⁶ n _{eq} /cm ²	SPS	
W12-L		CYRIC	1.5 x 10 ¹⁶ n _{eq} /cm ²		Irradiation finished on February 2023
W14-K		IRRAD	up to 1.7 x 10 ¹⁶ n _{eq} /cm ²		Magnet issue at IRRAD \rightarrow Not able to test after irradiation
W14-H					Serious BB issue
W14-M		CYRIC	1.5 x 10 ¹⁶ n _{eq} /cm ²		Irradiation finished on February 2023

Module on SCC

In the following W12-M \rightarrow SCC3 W12-J \rightarrow SCC5

Laboratory characterisation

Ag Ka

Source: X-ray tube (Amptek Mini-X2), with Ag anode

Log

Scans are run in Self-Trigger mode(HitOR)

columns on the slim edge

30% more hits in the external pixels on Ο the slim edge due to extension of the electric field

Counts

n

S. Ravera

CERN PS & SPS Beam tests setup and data analysis

Several TBs 2022 Campaigns

- Proton Synchrotron (PS): April 2022
- Super Proton Synchrotron (SPS): May-July-November 2022
- Data analysed with the C++ based framework Corryvreckan
- A 6-plane telescope [MIMOSA26] alignment with track χ^2 minimization $\rightarrow ~3 \ \mu m$ resolution on track reconstruction

The efficiency is calculated

- with tracks on DUT that **meets spatial and time** cuts w.r.t. reconstructed track
- disabled, masked pixels and neighbouring ones are not taken in account
- the resulting efficiency is valid for pixels that are not masked or disabled

Cooling box

Telescope & DUT

Efficiency of unirradiated 3D modules

SPS proton beam perpendicular to DUT

Sensor average efficiency

- 0 V : 98.7 ± 0.1 %
- 10 V: 98.9 ± 0.1 %

Results compatible with 50x50 µm² prototype (RD53A chip + FBK 3D sensor) previously tested at DESY (6 GeV electrons)

Unirradiated modules tested at PS and SPS perpendicular to
 the beam

- Efficiency > 98% already at 0 V bias (unirradiated)
- PS [12 GeV protons] 1-10 V bias, low statistics, not optimal DAQ
- SPS [120 GeV pions] 0 and 10 V bias, high statistics

3D Pixel cell local efficiency before irradiation

Pixel cell local efficiency map (normal incidence)

- Central area: higher than 99% efficiency
- n⁺-columns are formed at a safety distance
 of 25 µm from the handle wafer
 - ~99% efficiency at the N⁺ column

- Lower efficiency zones visible in corners:
 - \circ Effect (75% 99%) radius: 10 μm
 - p⁺ columns max radius: 4 μm

iWoRiD2022 & ITk-PublicPlots

S. Ravera

Beam Tests after 1st irradiation

Two modules irradiated in Bonn

- Uniform fluence Φ of 1 x 10¹⁶ n_{eo}/cm²
- Tested perpendicular (θ=0°) and tilted (θ=15°) w.r.t. the beam axis
- Average efficiency > 97% @ 40V bias
- FE average threshold of 1000 e

Pixel cell local efficiency maps

- For θ = 0° results are similar to the one obtained before irradiation with lower efficiency zones of radius ~ 10 μm at the corner of the pixel cell
- For θ = 15° lower efficiency areas are no longer visible in the local efficiency map → higher mean efficiency

Second irradiation at CERN IRRAD facility for the two modules irradiated in Bonn

- Not uniform fluence Φ up to 1.9 x 10¹⁶ n_{en}/cm²
 - Over the TB scintillator area the mean fluence is 1.71 x 10¹⁶ n_{eq}/cm² with a 3% uncertainty
- Tested perpendicular (θ=0°)
- Average efficiency ~97% @ 100V bias
- FE average threshold of 1000 e

1 March 2023

S. Ravera

Using the reconstructed fluence map of slide11

- Able to assign a received fluence value to each pixel
- Pixels are grouped in three fluence ranges

 (light blue boxes) according to the fluence Φ received
- For each fluence range the average fluence is calculated (3% uncertainty)
- Lower efficiency at same bias voltage with increasing fluence, as expected

Fluence range [10 ¹⁶ n _{eq} /cm ²]	Average fluence [10 ¹⁶ n _{eq} /cm ²]
1.5 < Φ < 1.65	1.59
1.65 < Φ < 1.75	1.70
1.75 < Φ < 1.9	1.78

Efficiency vs Fluence (2nd irradiation)

3D Pixel local efficiency after 2nd irradiation - 20V

S. Ravera

3D Pixel local efficiency after 2nd irradiation - 40V

3D Pixel local efficiency after 2nd irradiation - 80V

S. Ravera

3D Pixel local efficiency after 2nd irradiation - 120V

S. Ravera

Irradiated 3D pixel cell efficiency projections

Projection of the central row of the local efficiency map for different bias Voltages and fluences

- Efficiency is lower for pixels which received higher fluence
- At 120V Bias no significant differences between the to fluence ranges
- At low bias (< 120 V) partial inefficiency in the middle of the cell (n⁺ column) Normal incidence

Irradiated 3D pixel cell efficiency projections

Projection of the central and top rows of the local efficiency map for different bias Voltages

- In the edge projection lower efficiency areas are visible in corners (p⁺ columns) also at 120 V
- At 120 V Bias the central region is fully depleted
- The lower efficiency in the middle of the edge is related to a lower electric field in this region

Conclusions & Summary

The ATLAS ITk detector will be equipped with 3D sensor modules in the innermost layer (33-34 mm from collisions)

- Max fluence = $1.9 \ 10^{16} n_{eq}/cm^2$ (1.5 safety factor)
- Max TID = 1 Grad

3D modules (ITkPixV1.1 + 3D FBK 50x50 um²) assembled in Genova presented

- Tested unirradiated in laboratory (X-rays) and in test beams (CERN PS and SPS)
 - Efficiency > 98% already at 0 V bias
 - In-pixel efficiency in central area >99% efficiency
 - Lower in-pixel efficiency zones visible in corners
- Irradiated up to 1.9 x 10¹⁶ n_{ed}/cm² (not uniform, @Bonn and IRRAD) and tested in test beams (CERN SPS)
 - Average efficiency >97% reached at ~80 V, ~100 V, ~110 V for average fluence \approx 1.59 Φ , 1.70 Φ , 1.78 Φ resp.
 - Visible effect of p⁺ columns: lower in-pixel efficiency in corners → no longer visible if DUTs are tilted w.r.t the beam direction
 - The pixell cell is fully depleted with a bias voltage of about 150 V
- Outlooks
 - Studies ongoing to investigate pixels that became noisy during data taking in these sensors

Thank you for the attention !

Acknowledgements to:

M.Bomben, T.I.Carcone, P.M.Chabrillat, A.Cordeiro, Y.A.R. Khwaira, C.Krause, K.Nakkalil, A.R.Petri, A.Skaf, S.Terzo, Y.Tian, P.Wolf, H.Ye and G.Pezzullo, F.Ravotti, M.Jaekel

Backup

ITk Pixel layout

ITk Pixel Modules

- **Planar sensor**: standard pixel technology, n+ implants on p bulk surface
- **3D sensor**: n+ and p+ columns implanted vertically in p bulk substrate
 - Reduced distance between electrodes □ Shorter path of e/h
 - Lower impact of charge trapping along charge carrier path
 - Improved radiation hardness: perfectly OK @ 1e16 n_{eq}/cm² NIEL
 - Lower depletion voltage

 Lower power dissipation after irradiation

Planar sensors arranged in

1 March 2023

quad-modules: 1 bare module (4 chips + 1 planar sensor) + 1 flexible PCB

3D sensors arranged in triplet modules:

3 bare modules (1 chip + **3D sensor**) + 1 flexible PCB

 Both ring and barrel triplet assembly exercised with RD53A prototypes

ITk Pixel modules: Triplets

• 3D sensors will be assembled in triplet modules (1 flex + 3 bare modules)

- 2 different pixel cell dimensions for the 3D sensors (2x2 cm² pieces):
 - 25x100 µm² in the barrel triplet modules (288 sensors needed)
 - 50x50 µm² in the endcap triplet modules (900 sensors needed)
- In the last years, several R&D production of wafers by FBK:
 - Sensors 1x2 cm² compatible with the RD53A chip
 - Batch 2: Mask aligner, 130 µm active thickness
 - Batch 3: Stepper, 150 µm active thickness
 - Details at: <u>S. Terzo et al 2021 Front. Phys. 9:624668</u>
 - Bare modules (3D sensor + RD53A chip) assembled on card (SCC)
 - Tested before and after irradiation at DESY, up to 1e16 n_{eq}^2/cm^2
 - Details at: Md.A.A. Samy et al 2021 JINST 16 C12028

3rd 3D-SS batch also "New RD53A" ROCs With Stepper Lithography Technique

2nd **3D-SS batch also "New RD53A" ROCs** With Mask Aligner Lithography Technique

Modules 2nd irradiations at IRRAD

- at IRRAD (CERN, 7-27 September 2022) to add to fluence (not uniform) $0.9 \times 10^{16} n_{eq}/cm^2$ (peak), $0.5 \times 10^{16} n_{eq}/cm^2$ average devices inclined to increase irradiated area, scanning horizontally
- □ quite uniform irradiation along x, gaussian along y (beam profile)
- Visual inspection: visibile dark shape in a $\sim 1x2$ cm² area, not vertically centered, dots on the sensor surface
- Received fluence (local and average) measured from the activation of AI dosimeters placed on the back of sensor

Total integrated fluence:

- 1.9 x 10¹⁶ n_{eq}/cm² (peak)
 1.5 x 10¹⁶ n_{eq}/cm² average
- Not uniform fluence used to map efficiency measurements to different fluence values

IRRAD Reconstructed fluence map

IRRAD measured fluence map with AI foil

Tuning strategy and stability at TBs

SCCs studied in test beams at CERN SPS after each irradiation

 \circ Strategy: tuned with target 1000e at 100V bias, same tuning used for all V_{_{\rm bias}}

ATLAS / ITk

ITk-PublicPlots

 \circ Threshold and Noise distributions verified to be reasonably stable over a large V_{bias} range Threhsold tuned at 1000e Threhsold tuned at 1000e SCC3: W12-M BONN 1.01 × 10¹⁶n_{eq}/cm² ATLAS ITk-Pixel SCC3: W12-M_BONN_1.01 × 10¹⁶n_{ea}/cm² ATLAS ITk-Pixel SCC RMS SCC3 noise RMS SCC5: W12-J_BONN_1.00 × $10^{16}n_{eq}/cm^2$ SCC5: W12-J_BONN_1.00 × $10^{16}n_{ea}/cm^2$ SCC RMS SCC5 noise RMS Threshold [e] Noise [e] - 80 V_{Bias} [V] V_{Bias} [V]

(Error bars are the distribution mean error, columns are the distribution standard deviation) Plots with modules irradiated at 10¹⁶ n_{eq}/cm², similar results after second irradiation

S. Ravera

Operability window

- The operability window is defined by high efficiency (>97%) and bias voltage below the breakdown: ~100V to ~170V bias
- Leakage current I ~ 150 μA/cm2 and power dissipation 15 mW/cm² @ 100 V bias (scaled at -25°C) for SCC3

Operability window

- Observed number of noisy / disabled pixels increasing at high voltages (>120V bias)

 - performed **analog** scan vs V_{bias} to study the effect systematically
 - Slow increase at around ~3% failing pixels up to about ~150V bias
 - Faster rise next to breakdown voltage
 - Possibility to improve the 3% failing plateau <u>under investigation</u>
 - The operability window is reasonably the overlap between the region at high efficiency and the region with low fraction of failing pixels: ~100V to ~160V bias in this example

Operability window

Simulated electric field after irradiation [more info: (ITk_Public_Plots)]

In the plot represented field at V =-140V, after 1x10e16 neq/cm2

Lower electric field may be associated with lower efficiency areas, at least at low Voltage Bias ?

3D Pixel local efficiency after 2nd irradiation - 60V

S. Ravera

3D Pixel local efficiency after 2nd irradiation - 150V

S. Ravera