A CMOS pixels upgrade for the Belle II Vertex Detector

Ludovico Massaccesi¹ on behalf of the Belle II VTX collaboration

TREDI 2023, Feb 28th – Mar 2nd

¹University and INFN of Pisa, <u>ludovico.massaccesi@pi.infn.it</u>

The Belle II experiment at the SuperKEKB collider

KEK,

positron ring

7 GeV e

positron damping ring

- Asymmetric e⁺e⁻ collider
 - $\sqrt{s} = M_{\Upsilon(4S)} = 10.58 \, \text{GeV}$
- Luminosity frontier experiment
 - Flavor physics $(b, c, \tau, ...)$ Tsukuba
 - Dark matter searches
- ▶ Target $\int \mathcal{L} = 50 \, \text{ab}^{-1}$
 - Data taking started in 2019
 - Current $\int \mathcal{L} = 0.428 \, \mathrm{ab^{-1}}$
 - In long-shutdown since last June
 - Restart at beginning of 2024
- Target peak $\mathcal{L} = 6 \times 10^{35} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
 - High currents & nano-beam scheme
- Record $\mathcal{L}_{max} = 0.47 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
 - Keep increasing in the future
 - Challenging background conditions

4 GeV e

Interaction

Belle II detector

electron / positron linear injector

The Belle II VerteX Detector (VXD)

2 inner layers PiXel Detector (PXD)

- DEPFET sensors
- ▶ 14–22 mm radii
- ▶ 50 × 55-85 µm² pitches
- 20 µs integration time

4 outer layers Silicon Vertex Detector (SVD)

- Double-sided silicon strips
- ▶ 39–135 mm radii
- $\blacktriangleright~50\text{--}75\times160\text{--}240\,\mu\text{m}^2$ pitches
- ▶ 3 ns cluster time resolution

Motivation for a VXD upgrade

- SuperKEKB upgrade planned in \sim 2027 (Long Shutdown 2)
 - Necessary to reach luminosity target
 - Redesign of the interaction region being considered
 - Opportunity to install new vertex detector
- ▶ Higher luminosity \Rightarrow higher backgrounds \Rightarrow higher occupancy
 - Extrapolations show we may reach the current detector's limits
 - This limits the machine's freedom in pursuing higher luminosity
 - Larger safety factors would help
 - ▶ Current occupancy is $\mathcal{O}(1\%)$, upgrade target is $\leq \mathcal{O}(0.1\%)$
- Physics performance improvement possible
 - Material budget reduction
 - Space resolution improvement
 - Usage of all layers in track finding / pattern recognition
 - PXD (2 innermost layers) has long integration time
 - Only used for track extrapolation to interaction point for vertex resolution
 - ▶ No pattern recognition \Rightarrow lower efficiency at very low p_T

The VTX detector concept

Replace VXD with <u>5 layers of pixels</u>

- Depleted CMOS MAPS
 - Same chip for all layers
- 14–135 mm radii (like VXD)
- ▶ 30-40 µm pitch
- 25–100 ns timestamp resolution
- Reduced material budget
 - $\blacktriangleright~\sim 2.5\% X_0$ instead of $3.8\% X_0$
 - Improves tracking resolution
- Fast sparsified readout
 - In-pixel discrimination
 - Track finding with all layers

Robust against inner layer background

- ► Hit rate up to 120 MHz cm⁻²
- \blacktriangleright lonizing dose \sim 100 kGy/year
- \blacktriangleright NIEL $\sim 5 imes 10^{13} n_{
 m eq}/
 m cm^2/
 m year$

The VTX detector mechanics

2 inner layers: all-Si modules

- 3 outer layers: long ladders
 - Carbon-fiber structure
 - Water-cooled with cold plate
 - \blacktriangleright ~ 0.3–0.5% X_0 layers 3–4
 - \blacktriangleright ~ 0.8% X_0 layer 5

The TJ-Monopix2 prototype

- Developed for ATLAS
 FE derived from ALPIDE
 Column-drain R/O architecture
 ≥ 25 µm depletion thickness
 CMOS process modification
 Required for radiation hardness
 ~ 2000 e⁻ MPV for a MIP
 2 × 2 cm² chip, 512 × 512 pixels
- 33µm pitch, 25 ns timestamping
- 7-bit charge info (time over threshold)
- 3-bit per-pixel threshold tuning
- Expected (from design/simulation)
 - \blacktriangleright \sim 100 e^- minimum threshold
 - ▶ 5-10 e⁻ dispersion (w/tuning)
 - \blacktriangleright ~ 5 e^- noise
 - \triangleright > 97% efficiency at 10¹⁵ $n_{\rm eq}/{\rm cm}^2$

The TJ-Monopix2 prototype

- Developed for ATLAS
 FE derived from ALPIDE
 Column-drain R/O architecture
 ≥ 25 µm depletion thickness
 CMOS process modification
 Required for radiation hardness
 ~ 2000 e⁻ MPV for a MIP
 2 × 2 cm² chip, 512 × 512 pixels
 33 µm pitch, 25 ns timestamping
- 7-bit charge info (time over threshold)
- 3-bit per-pixel threshold tuning
- Expected (from design/simulation)
 - $\blacktriangleright~\sim 100\,e^-$ minimum threshold
 - ▶ 5-10 e⁻ dispersion (w/tuning)
 - \blacktriangleright ~ 5 e^- noise
 - \blacktriangleright > 97% efficiency at $10^{15} n_{\rm eq}/{\rm cm}^2$

Drawings: <u>CERN-THESIS-2021-146</u> Process modification: J NIMA 2017 07 046

The TJ-Monopix2 prototype

- Developed for ATLAS
 - FE derived from ALPIDE
 - Column-drain R/O architecture
- \blacktriangleright \geq 25 μ m depletion thickness
 - CMOS process modification
 - Required for radiation hardness
 - \blacktriangleright \sim 2000 e^- MPV for a MIP

Expected (from design/simulation)

- $\blacktriangleright~\sim 100\,e^-$ minimum threshold
- ▶ 5-10 e⁻ dispersion (w/tuning)
- \blacktriangleright ~ 5 e^- noise
- \blacktriangleright > 97% efficiency at $10^{15} n_{\rm eq}/{\rm cm}^2$
- 4 pixel front-end flavors
 - Differences in preamplifier, sensor coupling, and biasing

Drawings: <u>CERN-THESIS-2021-146</u> Process modification: <u>J NIMA 2017 07 046</u>

Ongoing testing in Pisa, HEPHY, Bonn, Göttingen, CPPM, ...

Internal injection tests

Ongoing testing in Pisa, HEPHY, Bonn, Göttingen, CPPM, ...

Internal injection tests

Time-over-threshold vs charge

Ongoing testing in Pisa, HEPHY, Bonn, Göttingen, CPPM, ...

Internal injection tests

Time-over-threshold vs charge

Ongoing testing in Pisa, HEPHY, Bonn, Göttingen, CPPM, ...

Internal injection tests

Time-over-threshold vs charge

Internal injection tests

- Time-over-threshold vs charge
- Radioactive source measurements
 - Absolute ToT calibration: compare Fe55 peak with its expected pos. from prev. plot

- Internal injection tests
 - Time-over-threshold vs charge
- Radioactive source measurements
 - Absolute ToT calibration: compare Fe55 peak with its expected pos. from prev. plot
- S-curve tests w internal injection
 Threshold (s-curves)

Internal injection tests

- Time-over-threshold vs charge
- Radioactive source measurements
 - Absolute ToT calibration: compare Fe55 peak with its expected pos. from prev. plot
- S-curve tests w internal injection
 - Threshold (s-curves)
 - Threshold dispersion & tuning

16

Internal injection tests

Time-over-threshold vs charge

Radioactive source measurements

 Absolute ToT calibration: compare Fe55 peak with its expected pos. from prev. plot

S-curve tests w internal injection

- Threshold (s-curves)
- Threshold dispersion & tuning

Plots for 12k pixels Threshold distribution

- Internal injection tests
 - Time-over-threshold vs charge
- Radioactive source measurements
 - Absolute ToT calibration: compare Fe55 peak with its expected pos. from prev. plot
- S-curve tests w internal injection
 - Threshold (s-curves)
 - Threshold dispersion & tuning
 - Noise

Plot for 12k pixels Noise (ENC) distribution

TJ-Monopix2 beam testing

Beam test performed at DESY in Jun 2022

- Unirradiated chips
- Preliminary settings used
 - \blacktriangleright Very high thresholds $\sim 550\,e^-$
- ► TB22, DURANTA telescope

Results

- > 99% efficiency
- ho ~ 8.5 μm cluster position resolution
 - $\blacktriangleright\,$ Better than pitch/ $\sqrt{12}\sim9.5\,\mu m$

Next steps

- Irradiation to 10^{14} – $10^{15}n_{eq}/cm^2$
- Test beam in first half of 2023

OBELIX (Optimized BELle II pIXel sensor)

Design ongoing, targeting submission in autumn 2023

Pixel matrix

- Same pixel cell as TJ-Monopix2
- Same R/O scheme as TJ-Monopix2
 - Can handle up to 600 MHz/cm²
- ▶ Timestamp \sim 30–100 ns

Periphery

- Trigger memory and logic adapted to Belle II
 - Can handle up to $\mathcal{O}(100\,\mathrm{MHz/cm^2})$
- Single serial output at 320 MHz

Power pads

Power regulators included to simplify integration

Power dissipation

Expected 160-220 mW/cm² at max hit rate (preliminary)

Summary

 \blacktriangleright Belle II is considering a vertex detector upgrade in \sim 2027

- VTX: all-layer depleted monolithic pixel detector
 - Improved performance
 - Increased machine background tolerance

R&D activities ongoing

- ► TJ-Monopix2 lab and beam testing for finalizing OBELIX design choices
- OBELIX design, targeting submission in autumn 2023
- Thermomechanical and electrical design and mockup testing
- Performance studies on simulations

Thanks for your attention

The Belle II VTX collaboration

O. Alonso¹, F. Arteche², D. Auguste³, M. Babeluk⁴, M. Barbero⁵, P. Barrillon⁵, G. Batignani^{6,7}, J. Baudot⁸, C. Beigbeder³, T. Bergauer⁴, F. U. Bernlochner⁹, C. Bespin⁹, S. Bettarini^{6,7}, J. Bonis³, F. Bosi⁶, R. Bouroumiya¹⁰, P. Breugnon⁵, Y. Buch¹¹, I. Caicedo⁹, G. Casarosa^{6,7}, D. Charlet³,
C. Colledani⁸, A. Dieguez¹, J. Dingfelder⁹, A. Dorhokov⁸, J. Duarte¹², T. Fillinger⁸, C. Fink⁸, F. Forti^{6,7}, A. Frey¹¹, T. Hemperek⁹, S. Hidalgo¹³, C. Hu⁸, C. Irmler⁴, M. Karagounis¹⁰, E. Kou³, H. Kruege⁹, J. L. Soler-Fernandez¹, F. Le Diberder³, C. Marinas¹⁴, M. Masa^{6,7}, L. Massaccesi^{6,7}, J. Mazorra¹⁴, M. Minuti^{6,7}, N. Moffat¹³, S. Mondal^{6,7}, D. Moya¹², P. Pangaud⁵, E. Paoloni^{6,7}, G. Pellegrini¹³, H. Pham⁸, G. Rizzo^{6,7}, P. Robbe³, L. Schail⁹, C. Schwanda⁴, B. Schwenker¹¹, M. Schwickardi¹¹, J. Serrano⁵, P. Sieberer⁴, K. Trabelsi³, I. Valin⁸, I. Vila¹², M. Vogt⁹, N. Wermes⁹, C. Wessel⁹, M. Winter³

¹University of Barcelona, Barcelona, Spain

²ITAINNOVA - Instituto Tecnológico de Aragón, Zaragoza, Spain

³Université Paris-Saclay, CNRS/IN2P3, IJCLab, Paris, France

⁴Institute of High Energy Physics, Vienna, Austria

⁵Aix Marseille Université, CNRS/IN2P3, CPPM, Marseille, France

⁶INFN Sezione di Pisa, Pisa, Italy

⁷Dipartimento di Fisica, Università di Pisa, Pisa, Italy

⁸Université de Strasbourg, CNRS, IPHC, UMR 7178, Strassbourg, France

⁹University of Bonn, Bonn, Germany

 ¹⁰Fachhochschule Dortmund. University of Applied Sciences and Arts, Dortmund, Germany
 ¹¹II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Goettingen, Germany

 ¹²IFCA - Instituto de Física de Cantabria (CSIC/University of Cantabria), Santander, Spain
 ¹³Centro Nacional de Microelectrónica (IMB-CNM-CSIC), Barcelona, Spain

¹⁴IFIC - Instituto de Física Corpuscular (CSIC/University of Valencia), Valencia, Spain

Backup: VTX physics performance

Realistic simulation using Belle II software framework 🐸

- Realistic pixel sensor model tuned on TJ-Monopix1 data
- Full Belle II geometry with upgraded vertex detector
- Full Belle II tracking chain including drift chamber

Results (wrt current Belle II)

- Higher efficiency
 - Especially at low p_T
- Improved impact parameters resolution

Longitudinal impact-parameter resolution $\sigma(Z_0)$

Backup: TJ-Monopix2 readout

Backup: TJ-Monopix2 cell schematic

Backup: TJ-Monopix2 in-pixel logic

Backup: TJ-Monopix2 readout sequence and signals

Backup: TJ-Monopix2 preamplifier output

29

Backup: TJ-Monopix2 injection circuit

Backup: TJ-Monopix2 absolute calibration

Fe55 peak at ToT = 68×25 ns (cascode FE) Fit to ToT-vs- Q_{inj} curve (1k pixels in plot)

Extrapolate ToT-vs- Q_{inj} fit to Fe55 peak's ToT \Rightarrow corresp. Q_{inj} is 1698 e^- Calibration is off by \sim 5%, which is within uncertainties

Backup: OBELIX all-silicon ladders

2 inner layers (iVTX)

- 4 contiguous sensors diced as a block
- Self-supporting
- Air-cooled
- ▶ 200 mW/cm²
- \blacktriangleright ~ 0.1% X_0
- 3 outer layers (oVTX)
 - Carbon-fiber structure
 - Water-cooled with cold plate
 - \blacktriangleright ~ 0.3% X_0 layers 3–4
 - \blacktriangleright ~ 0.8% X_0 layer 5

Backup: requirements for OBELIX

- Spatial resolution $< 10 \,\mu m \Rightarrow pitch < 40 \,\mu m$
- \blacktriangleright Hit time-of-arrival resolution $\lesssim 100\,\mathrm{ns}$
- ▶ Power dissipation $< 200 \text{ mW/cm}^2$
- Ionizing radiation TID 100 kGy/year
- ▶ NIEL fluence $5 \times 10^{13} n_{\rm eq}/{\rm cm}^2/{\rm year}$