

First results on monolithic pixel sensors test structures in the 65 nm technology Stefania Perciballi, stefania.perciballi@unito.it, on behalf of the ALICE Collaboration

The ALICE experiment

The ALICE Inner Tracking System 2

ITS2:

Based on Monolithic Active Pixel Sensors (**MAPS**) it is the **largest pixel detector** ever built

ALice PIxel DEtector (ALPIDE) \rightarrow developed for ALICE ITS 2

- technology: TowerJazz 180 nm
- sensor area: 15x30 mm²
- 1024x512 MAP matrix

Further improvements?

ALICE ITS upgrade for LS3

- circuit board \rightarrow not required if integrated in circuit (stitching)
- water cooling \rightarrow not required if the power consumption is < 20 mW/cm²
- mechanical support \rightarrow not required if self supporting arched structure

Letter of Intent for an ALICE ITS Upgrade in LS3 https://cds.cern.ch/record/2703140

S. Perciballi

ITS3: 6 truly cylindrical wafer-scale MAPS

- 300 mm wafer-scale MAPS sensors, fabricated using stitching (→ requires to move from the 180 nm ⇒ 65 nm)
- thinned down to 20-40 µm making them flexible
- bent to target radii (L₀: 23 mm→18 mm, closer to the interaction point thanks to the new beampipe at 16 mm)
- mechanically held in place by carbon foam ribs

Letter of Intent for an ALICE ITS upgrade in LS3: https://cds.cern.ch/record/2703140?In=it

Silicon flexibility and bending of ALPIDEs

- Chip performance doesn't change after bending
- Efficiency above 99.99% at a threshold of 100 e⁻ (normal operating point), consistent with flat ALPIDE

S. Perciballi

18th Trento Workshop on Advanced Silicon Radiation Detectors

MAPS in the 65 nm CMOS process

First submission in the Tower Partners Semiconductor (TPSCo) 65 nm technology

Verification of the technology for charge collection efficiency, detection efficiency, radiation hardness:

- Process modification for fully depleted sensor:
 - \succ standard \rightarrow increase depletion region until epitaxial layer
 - ➤ modified
 - ➤ modified with gap → increase the lateral field to speed up the charge collection process

MLR1 Test Structures

Analogue Pixel Test Structure (APTS)

- **aim:** explore different pixel designs
- matrix sizes: 4×4
- pixel pitch: 10, 15, 20, 25 µm

Two types of output drivers:

S. Perciballi

- Source follower (APTS-SF)
- OpAmp (APTS-OA) \rightarrow timing

Circuit Exploratoire (CE65)

- **aim:** study pixel matrix uniformity
- matrix sizes: 64x32, 48x32
- **pixel pitch:** 25, 15 µm

Digital Pixel Test Structure (DPTS)

- aim: study in-pixel discrimination
- matrix sizes: 32×32
- pixel pitch: 15 μm

Chip Characterization

In Lab measurements:

- Pulse and noise measurements
- Measurements with an X-rays source (⁵⁵Fe)
 - Tuning of operational parameters
 - Signal calibration
 - Charge collection efficiency study

Acquisition system

S. Perciballi

At Test Beam facilities:

- Particle tracks reconstructed by telescope
- Association of clusters in DUT with tracks
- Efficiency/Fake Hit Rate vs. discriminator threshold for digital chips
- Energy straggling for analogue chips
 - Spatial and temporal resolution

APTS-SF - ⁵⁵Fe Results

APTS-SF - ⁵⁵Fe Results

S. Perciballi

S. Perciballi

18th Trento Workshop on Advanced Silicon Radiation Detectors

APTS-OPAMP - Signal Parameters

S. Perciballi

18th Trento Workshop on Advanced Silicon Radiation Detectors

-2 ns

4 ns

2 ns

APTS-OPAMP - ⁵⁵Fe Results

Fast readout allows to estimate the charge collection time via signal fall time

S. Perciballi

DPTS - Test Beam Results

DPTS - Test Beam Results

- Submitted the first stitched sensors
- the setup for testing is being prepared

- ITS3 replaces the 3 innermost layers of ALICE ITS2 by a bent, wafer scale MAPS detector which reduces material budget by factor of 7 compared to ITS2
- The TPSCo 65 nm technology is chosen and is being characterized
- results on small scale prototypes are promising and meet the requirements of ITS3 and beyond
- stitched sensors will be ready for testing in spring
- TDR under preparation

TREDI 2023 Trento, 28 February - 2 March 2023

S. Perciballi

Back-up Slides

S. Perciballi

All submatrices in standard and modified processes collect the same total charge

