

Radiation tolerance study of LGADs for the CMS Endcap Timing Layer detector.

UNIVERSIDAD DE CANTABRIA

18th "Trento" Workshop on Advanced Silicon Radiation Detectors

Efrén Navarrete Ramos. On behalf of the CMS Collaboration

Contents

- Motivation
- Samples Description
- Determination of the Acceptor Removal Constant
- Radioactive Source Characterization
 - Charge Collection
 - Time Resolution
- Conclusions

Motivation

Bun 4 - 5

13.6 - 14 TeV

2040

4000 fb

5 to 7.5 x nominal Lum

The new HL-LHC upgrade environment:

- CMS and ATLAS detectors will be upgraded (Phase II HL upgrade)
- Integrated luminosity ≥ 3000 fb⁻¹ (~10x times more than Phase 1)
- Pile-up = 200 (4x times more than Phase 1)
- Timing will help resolve all collisions

Disk I, Face 1
 Disk I, Face 1
 Disk I, Face 2
 ETL Mounting Bracket
 Disk 2, Face 1
 Disk 2, Face 1
 Disk 2, Face 2
 HGCal Neutron Moderator
 ETL Support Cone
 Support Cone insulation
 HGCal Thermal Screen

ETL Thermal Screen

Scheme of one of the two parts of the ETL

Timing with silicon detectors:

CONSTRUCTION

Bun 3

13.6 TeV

2 x nominal Lum

pilot beam

EYETS

inner triple

450 fb

radiation lim

• Track timing, with the new Endcap Timing Layer (ETL): Assign the "time stamp" to the track.

LS3

HL-LHC

installation

2027

ATLAS - CMS

HL upgrade

INSTALLATION & COMM

Disentangling Primary vertex reconstruction will lead to higher effective luminosity

Endcap Timing Layer (ETL): $1.6 < |\eta| < 3.0$

- Silicon sensors with internal gain (LGAD)
- Surface: ~14 m²
- Radiation tolerance up to $1.5 \times 10^{15} n_{eq}^{2}$ at $|\eta|=3.0$
- Fluence is less than $1 \times 10^{15} n_{ea}$ /cm² for 80% of the ETL area

28/02/23

IF(A

Samples Description CNM

CNM-IMB Run 15246: 6" ATLAS-CMS.

- **Epitaxial** Wafers, **shallow** junction, some with **carbonated** gain layer, 55µm active thickness and 525µm handling wafer.
- Sensor sizes: 1x1, 2x2, 5x5, 16x16 & 16x32 of 1.3x1.3mm²
- CNM fresh detectors measured before and after neutron irradiation (0.6E15, 1E15 & 1.5E15 [n_{eq}/cm²] @ Ljubljana).

Samples Description FBK

FBK UFSD4 Production.

- Consisting on carbonated and standard gain layer wafers, 2 layouts for interpad regions: Type 9 (Double p-stop) and Type 10 (GuardRing-Grid), Shallow and Deep Drive-In configurations. 55 μm active thickness.
- UFSD includes single pad, **1x2**, **2x2**, 5x5 & 16x16 array.
- This study focused on Wafers for Carbonated and Shallow Drive-In Gain layer.
 - FBK_2022v1_1x2_W7 \rightarrow Non-irradiated
 - FBK_2022v1_1x2_W7 \rightarrow Non-irradiated
 - FBK_2022v1_1x2_W7 → Non-irradiated
 - FBK_2022v1_2x2_W7-8 → Irr 1E15
 - FBK_2022v1_2x2_W7-8 → Irr 1.5E15
 - • FBK_2022v1_2x2_W9 → Irr 1E15

			Gain Layer		
Wafer Group	Wafer #	DI	Dose	Carbon	Diffusion
1	1	Shallow	0.96	0.8	CH-BL
2	2	Shallow	1.00	1	CH-BL
3	3	Shallow	0.98	1	CH-BL
3	4	Shallow	0.98	1	CH-BL
4	5	Shallow	0.98	0.8	CH-BL
4	6	Shallow	0.98	0.8	CH-BL
4	7	Shallow	0.98	0.8	CH-BL
4	8	Shallow	0.98	0.8	CH-BL
4	9	Shallow	0.98	0.8	CH-BL
5	10	Shallow	0.98	0.8 + CS0.6	CH-BL
5	11	Shallow	0.98	0.8 + CS0.6	CH-BL
6	12	Deep	0.75	0.6	CL-BL
7	13	Deep	0.77	0.6	CL-BL
8	14	Deep	0.77	0.6	CL-BL
8	15	Deep	0.77	0.6	CL-BL
9	16	Deep	0.79	0.6	CL-BL
9	17	Deep	0.79	0.6	CL-BL
9	18	Deep	0.79	0.6	CL-BL

Electric Characterization, CV (Fresh)

Standard, CNM, RT

Main Diode: HV GR: biased HV BackSide: Ground Temperature: RT Frequency: 1000 Hz

İF(A

efren.navarrete@cern.ch - 18th Trento Workshop

Electric Characterization, IV (Fresh)

Standard, CNM, RT

Main Diode: HV GR: biased HV BackSide: Ground Temperature: RT Compliance: 100 uA

efren.navarrete@cern.ch - 18th Trento Workshop

Acceptor Removal: IV

V_{gl} calculation

Using "automatic" variable **kbd**[1], based on the derivative of current[2], to identify depletion transition from gain layer to bulk. (See BackUp).

[1] Marcos Fernandez
16th Trento Workshop on
Advanced Silicon Radiation
Detectors, 17th Feb 2021
[2] N. Bachetta et al.
https://doi.org/10.1016/S0168-9002(00)01207-9
Other methods to calculate

Other methods to calculate Vgl, see: V. Gkougkousis, 35th RD50 workshop, 2019.

Acceptor Removal Constant

Carbonated, CNM, -25° C

Standard, CNM, -25° C

Acceptor Removal Constant

Caveat:

Radioactive Source Setup

Devices Under Test, CNM samples

Manufacturer	CNM		FBK
Irradiation [n _{eq} /cm ²]	W8 Carbonated (Single diodes)	W10 Standard (Single diodes)	Carbonated
Non-Irradiated	2	3	3
0.6e15	2	2	-
1.0e15	2	2	2
1.5e15	2	-	1

Charge Collection

Carbonated, CNM, -25° C

-Q50/(100*50)*1e6 {Vbias==260}

Standard, CNM, -25° C

-Q50/(100*50)*1e6 {Vbias==260}

Collected charge: Integral of the Waveforms. Most Probable Value Of **Landau+Gaus** Fit.

Charge Collection vs Fluence, CNM

Carbonated CNM, -25° C

Standard CNM, -25° C

Time Resolution vs Fluence, CNM

Standard, CNM, -25° C

Charge collection comparison

Carbonated CNM vs Carbonated FBK

efren.navarrete@cern.ch - 18th Trento Workshop

CMS

Time Resolution comparison

Carbonated CNM vs Carbonated FBK

Conclusions

- Radiation tolerance study completed for **CNM** and **FBK LGADs** productions.
- Acceptor Removal Constant of Carbonated samples with respect to the Standard samples was reduced by more than a factor of two, on CNM LGADs.
- CNM Carbonated LGADs comply with CMS radiation tolerance requirement up to a fluence of 1E15 [n_{eq}/cm²]. This is the first CNM production in achieving these specifications.
- **FBK Carbonated LGADs comply** with CMS requirements at all irradiation fluences.

THANK YOU

BackUp

Electric Characterization (Fresh)

IV Mapping Single pad diodes

D320					
D325			Cark	nna	tod
D323	D324P		Carr	JUIIA	เธน
D321	D322P				
D318	D319P	D320			
D315	D316P	D317			
D311	D312P	D313	D314		
D307	D308P	D309	D310		
D302	D303P	D304	D305	D306	
D297	D298P	D299	D300	D301	
D292	D293P	D294	D295	D296	
D287	D288P	D289	D290	D291	
D281	D282P	D283	D284	D285	D286
D275	D276P	D277	D278	D279	D280
D269	D270P	D271	D272	D273	D274
D267	D268P				
D265	D266P				
D263	D364P				
D261	D262P				
D259	D260P				
D253	D254P	D255	D256	D257	D258
D247	D248P	D249	D250	D251	D252
D241	D242P	D243	D244	D245	D246
D236	D237P	D238	D239	D240	
D231	D232P	D233	D234	D235	
D226	D227P	D228	D229	D230	
D221	D222P	D223	D224	D225	
D217	D218P	D219	D220		
D213	D214P	D215	D216		
D210	D211P	D212			
D207	D208P	D209			
D205	D206P				
D203	D204P				
D202			27 n	ndaei	Inod
D201				ieas	uieu

D326				_	_
D325			Sta	anda	rd
D323	D324P			lindu	IM
D321	D322P				
D318	D319P	D320			
D315	D316P	D317			
D311	D312P	D313	D314		
D307	D308P	D309	D310		
D302	D303P	D304	D305	D306	
D297	D298P	D299	D300	D301	
D292	D293P	D294	D295	D296	
D287	D288P	D289	D290	D291	
D281	D282P	D283	D284	D285	D286
D275	D276P	D277	D278	D279	D280
D269	D270P	D271	D272	D273	D274
D267	D268P				
D265	D266P				
D263	D364P				
D261	D262P				
D259	D260P				
D253	D254P	D255	D256	D257	D258
D247	D248P	D249	D250	D251	D252
D241	D242P	D243	D244	D245	D246
D236	D237P	D238	D239	D240	
D231	D232P	D233	D234	D235	
D226	D227P	D228	D229	D230	
D221	D222P	D223	D224	D225	
D217	D218P	D219	D220		
D213	D214P	D215	D216		
D210	D211P	D212			
D207	D208P	D209			
D205	D206P				
D203	D204P				
D202			22 n	neac	ured
D201				icus	aicu

Electric Characterization

Characterization summary (88 sensors measured fresh)

	С	V	Γ	V
	W8	W10	W8	W10
Single sensors	12	12	27	22
2X2 sensors	12	13	9+7+1	16+3+3
Total:	24	25	44	44

Electric Characterization, IV Irradiated

İF(A

Typical Waveform

BaseLine Noise Bias Dependence

BaseLine Noise Bias Dependence

Spurious Pulses Amplitude vs Vbias

İF(A

Spurious Pulse Rate at Operating Vbias

Carbonated CNM, -25° C

Example of waveforms of thermally triggered Spurious pulses:

Due to the Aggressive Interpad Distance (IP47)

Fluence	Operating voltage (50ps)	Spurious pulse rate (-15mV th)	
	240 \/bias	2Hz	
UEID	240 V DIAS	7Hz	
0.6E15	460) (bios	7Hz	
	400VDIAS	40Hz	
1E15	EQ0) (bios	1Hz	
	SOUVDIAS	7Hz 7Hz 40Hz 1Hz 59Hz	

Caveat: Pulse rate may be limited by the digital Scope BandWidth.

Amplitude (Spureous signals) [mV

28/02/23

efren.navarrete@cern.ch - 18th Trento Workshop

NIM-electronics Setup

Spurious Pulse Rate (th=-25mV)

Spurious Rate (NIM) th=-25mV

Carbonated CNM vs FBK, -25° C

28/02/23

New CMS Run (6LG2)

Devices (CMS) : 1x1, 2x2, 5x5 & 16x16 pixels of 1.3x1.3 mm²

To estimate the production yield there will be a dedicated Run

- 10 LGAD wafers
- 150 mm, 55/525 μm, Si-Si wafers (6LG2)
- Some of them carbonated
- Interpad IP60 IP80
- Gain layer design
 - CNM standard multiplication layer, as in MS run.
 - Deep P-layer
- CMS 16x16: 23 devices
 - **ETLROC** chip compatible (waiting for final layout)
 - SE3, 300 μ m (500 μ m at wire bonding area)
 - No TCT opening window
 - Reduced dead area in corners to improve fill factor

Time Resolution

Constant Fraction Discrimination (40%).

Compute the Time of arrival difference between the three sensors: $\Delta t_{1,2}$, $\Delta t_{1,3}$ & $\Delta t_{2,3}$

Fit the Width of the difference distributions: $\sigma_{_{1,2}}$, $\sigma_{_{1,3}}\,\&\,\sigma_{_{2,3}}$

The time resolution and its errors[2] are determined by:

$$\sigma_{1} = \left(\frac{1}{2} \left(\sigma_{21}^{2} + \sigma_{13}^{2} - \sigma_{32}^{2}\right)\right)^{\frac{1}{2}}, \quad \sigma_{2} = \left(\frac{1}{2} \left(\sigma_{21}^{2} - \sigma_{13}^{2} + \sigma_{13}^{2}\right)^{\frac{1}{2}}, \\ \delta_{1} = \frac{\left(\left(\sigma_{21}\delta_{21}\right)^{2} + \left(\sigma_{13}\delta_{13}\right)^{2} + \left(\sigma_{32}\delta_{32}\right)^{2}\right)^{\frac{1}{2}}}{2\sigma_{1}}, \\ \delta_{2} = \frac{\left(\left(\sigma_{21}\delta_{21}\right)^{2} + \left(\sigma_{13}\delta_{13}\right)^{2} + \left(\sigma_{32}\delta_{32}\right)^{2}\right)^{\frac{1}{2}}}{2\sigma_{2}}, \\ \delta_{3} = \frac{\left(\left(\sigma_{21}\delta_{21}\right)^{2} + \left(\sigma_{13}\delta_{13}\right)^{2} + \left(\sigma_{32}\delta_{32}\right)^{2}\right)^{\frac{1}{2}}}{2\sigma_{3}}.$$

[2] See Paul McKarris' Talk: https://indico.cern.ch/event/840877/

Noise RS Setup

BlineRMS {(BlineRMS<0.005&&Vbias==720.00000))

htemp

0.002953

.015

Noise Channel

volt:time {(Vbias==720.000000)}

volt {(Vbias==720.00000)}

Std Der

0.000240

0.003246

16000

Noise RS Setup

volt:time {(Vbias==700.000000)}

Noise RS Setup

efren.navarrete@cern.ch - 18th Trento Workshop

time

Time Resolution

Carbonated, CNM, -25° C ∆t at 235Vbias hBin1 Entries 720 0.03588 Mean Non-irradiated 0.07403 Std Dev χ^2 / ndf 525.3 / 55 21.84 ± 0.81 Constant 0.0367 ± 0.0027 Mean 0.06405 ± 0.00288 Sigma 10 $\begin{array}{cccc} 0.1 & 0.2 & 0.3 & 0.4 \\ \Delta t_{1,2}, \, k{=}0.4 \, at \, 235 \text{Vbias [ns]} \end{array}$ -0.4 -0.3-0.2 -0.1 0 ∆t at 580Vbias hBin1 Entries 675 0.02847 Irradiated 1E1 Mean Std Dev 0.0728 χ^2 / ndf 749.5 / 55 Constant 19.03 ± 0.94 0.02687 ± 0.00394 Mean 0.07027 ± 0.00441 Sigma

.1 0.2 0.3 ∆t_{1,2}, k=0.4 at 580Vbias [ns]

0.1

-0.2

-0.1

0

IF(Calculation of V_{gl} of irradiated devices from CV measurements is difficult. It depends on frequency. Also, double linear fit of C(V) curves is always subjective

A new method to calculated Vgl in LGADs, based on leakage current measurements only, was presented by us in 16th Trento meeting:

When gain layer is depleted, the bulk current gets multiplied: kink in leakage current observed

Using "automatic" variable [1], based on the derivative of current, to identify depletion transition from gain layer to bulk.

$$K(I,V) = \frac{dI}{dV} \frac{V}{I}$$

Marcos Fernandez 16th Trento Workshop on Advanced Silicon Radiation Detectors, 17th Feb 2021

Radioactive Source Setup

Oscilloscope Tektronix MSO 7404C

Climate Chamber

FBK IV (fresh)

