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Overview
dSiPM ongoing studies

| Characterisation of a digital SiPM in 150 nm CMOS Imaging Technology | Gianpiero Vignola 02-Mar-2023

Introduction

Test Beam studiesSensor & DAQ
Laboratory

Characterization

Summary

• DESY dSiPM Specifications

• Pixel Design & Readout

• DAQ Chain

• IV Curves & Dark Count Rate

• Quenching & Pixel Masking

• DESY-II TB Setup

• First Results



DESY. Page 3

Introduction
What is a Silicon PhotoMultiplier
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• Solid state single photon detectors

• Array of Single Photon

Avalanche Diodes (SPADs) with 

pitches in the range 10-100 µm

• High Internal Gain (~106) thanks to 

High doped amplification region

• Signal proportional to the number

of photons that hit the sensor

• High quantum efficiency

• Low power consumption

• Insensitive to magnetic fields

Typical SiPM design (KETEK)Schematic structure of SPAD (Fraunhofer IMS )

Photomultipliers SiPMs
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Introduction
Analog vs Digital SiPMs
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Project Goals

• Investigate CMOS SPADs performances & possibilities

• Possible Applications:
• Optical Fibre Read-Out
• 4D-Tracking

Why digital?

• Small quenching circuitry

• Inverter as event discriminator

• In-pixel/in-Chip Hit counting

• Masking & Hit map readout

Commercial CMOS processes

• Sensor & electronics in the same Chip

• Direct photon detection (Monolithic: no 

backside processing)

• Low-cost R&D (Available in Multi Project Wafer)

• High volume production

Schematic representation of the readout chain of an Analog SiPM

Schematic representation of the readout chain of a Digital SiPM



DESY. Page 5

DESY dSiPM Specifications
ASIC in LF 150 nm CMOS
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Layout

• In LFoundry 150 nm CMOS Technology

• Main matrix: 32 x 32 pixels

• Sensor area: 2230 x 2430 µm2

• Test structures in the Chip periphery

Features

• Full hit matrix readout and timing measurements

• 4 x 12-bit TDCs with <100 ps timing resolution

• Pixel masking

• 2-bit in-pixel hit counting

• Validation logic whit adjustable settings

• Readout is Frame based (3 MHz frame rate)
ASIC Design of the DESY dSiPM
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Pixel Design & Readout
4 SPAD Layout
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Pixel Layout & electronics

• 4 SPADs sharing one Frontend and additional readout
electronics

• Fill factor ~30% (limited by SPAD dimensionavailable)

• Quenching Transistor (VQuench)

• Masking Circuitry

• In-pixel Hit counter

Readout concept

• The ASIC is divided into four identical quadrants
(16 x 16 pixel units)

• Outputs of all pixels are combined in a wired-OR

• The fastest pixel signal triggers a running 12-bit TDC

• Validation logic to discard undesirable events

• The Hit matrix is readout via a 16-to-1 multiplexer

Q1 Q2

Q3 Q4

Readout concept of a 16-by-16 pixel unit (Quadrant)

Microscope picture of a pixel Microscope picture of the Chip

69.6 µm
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DAQ Chain
Caribou System

| Characterisation of a digital SiPM in 150 nm CMOS Imaging Technology | Gianpiero Vignola 02-Mar-2023

Caribou

• Versatile readout system developed by CERN, BNL, DESY and 
University of Geneva

• Allows fast, simple and Low-cost implementation& tests of sensors

• Already used for: ATLASPix, CLICTD, DPTS, FASTPIX, etc.

SoC Board

• An embedded CPU runs DAQ and control software

• An FPGA runs custom hardware for data handling and detector control

Control and Readout (CaR) Interface Board

• Provides physical interface from the SoC to the detector chip

• Contains all peripherals needed to interface and run the chip:
power supplies, ADCs, voltage/current references, LVDS links, etc.

Chip Board
• Passive & detector-specific components only

• DSiPM here glued & bonded
• Enclosed in Aluminum case that acts as heat sink and light shield

http://dx.doi.org/10.22323/1.370.0100

https://gitlab.cern.ch/Caribou/

Chip Board Chip Glued & Bonded

Caribou DAQ System

HV

Al Case with 
Chipboard and 

ASIC

Control and 
Read (CaR) 

board

SoC Board

http://dx.doi.org/10.22323/1.370.0100
https://gitlab.cern.ch/Caribou/peary
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IV Curves & Dark Count Rate
Chip Characterization
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• Detailed characterization performed on several samples 

(Chip4 shown in figures)

• IV & Dark Count Rate studies performedwhit controlled
temperature (from -25 to 20 °C) and humidity (~ 0 %)
in a dark environment

• Measurements compatible with expectations

VBDTemperature
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Break Down Evaluation, Temperature Scan

Dark Count Rate (per pixel), Temperature ScanIV curves (Full Matrix), Temperature Scan
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Quenching & Pixel Masking
Two Peculiar Features
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Quenching

• The Pixel's quenching circuit consists of a 

single Transistor

• Acting on VQuench is possible to tune

the signal length

• Non-overlapping hits (up to 3) can be 

distinguished and counted within the frame 

(3MHz frame rate)

Pixel Masking

• Individual pixels can be disabled

• Allows deactivation of noisy/unused pixels 

(DCR & power consumption reduction)

• Allows in-depth characterization of SPAD 

arrays

All ON

50 % of noisiest

pixels OFF

High noise

single pixel

Low noise

single pixel

Pixel Circuit Dead Time vs VQuench

IVs whit different masksDCR whit different masks (2 OverVoltage)
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DESY-II TB Setup
May and Oct. 2022
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• Two Test Beam campaigns with Caribou+dSiPM at DESY-II TB

• 4 GeV/c electron beam

• 6 beam telescope MIMOSA 26 planes used for track 

reconstruction ( Spatial resolution 3.24 µm per plane)

• Scintillators + PMT (in May) and Pixelated timing plane (in October) 

used as Trigger reference

• Active cooling to allow stable conditions & Temperature Scans

(down to ~0 °C on Chip)

• AIDA Trigger Logic Unit (TLU) allowed synchronous operation of 

the involved detector systems

• Mechanics, cooling system and optical isolation was optimized to 

maximize track resolution

• Particle Track & time was reconstructed using Telescope data, 

dSiPM response in MIP detection can be investigated

DESY II Test Beam Setup
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First Results
Work in progress
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Time Residuals

• Defined as the difference between the Track time stamp
(TLU+trigger) and the Hit time stamp (dSiPM TDC)

• Time correlation betweendSiPM Hit & tracks confirmed

• Width dominated by Trigger time resolution (~ 2ns)

Spatial Residuals

• Defined as the difference betweenhit position in 
DUT and interpolated track in the same z-position

• Double-peakstructure due to inefficient regions inside 
the pixels

• Proves pixel scale resolution of the dSiPM

Efficiency

• The Efficient area can be associated to the SPAD position

• Track resolution at the DUT ~ 5 µm

• Chip Total efficency in MIP detection~ O(Fill Factor)*

*Impact of noise & systematics to be studied Microscope picture of a pixel Example of In-pixel Efficiency Map

Example of Time Residuals

STD ~2 ns

Example of Spatial Residuals
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Summary
A promising R&D
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Chips & Characterisations

• A digital SiPM was designedat DESY in LFoundry 150 nm CMOS

• CMOS circuits are implemented in-pixel and in Chip periphery

• All characterisations performed to date are in line with the 
expected performances

Results from Test Beam

• DESY dSiPM was successfully integrated in DESY-II TB setup

• 4D-Tracking performances of the prototype are 
currently being studied

Project Plans

• Next TB with focus on dSiPM timing in a few days (13-27 Mar.)

• 2 aligned DUT: time resolutionusing TOA difference

• Pixel & Subpixel scale laser studies

• Ongoing research of possible applications
Dark Events Hitmap whit DESY logo Mask applied
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Additional characterizations
Validation Logic & Dead Time
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Validation logic

• A 4-step validation logic is implemented in every quadrant

• Every step can be configured to be an AND or OR gate

• A flag bit is generated for event validation within 2 ns

• Successfully validated using laser pulses and masking

Quenching & Dead Time

• In 2-bit mode is it possible to count laser pulses within the frame

• Consecutive pulses can be distinguished only if the 

discriminator threshold is crossed (non-overlapping pulses)

• Pulse length can be tuned by acting on Vquench Transistor 

(Global Setting)

Pixel Circuit Dead Time vs VQuench (chip4)

Schematic representation of the Validation Logic
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Laser Studies
At sub pixel level
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FPGA 
Board

CarBoard

DUT

X-Y stagesZ stage

Optical system

Laser

Source

Trigger Data

Dark box

Setup

• DUT placed on an x-y stage

• Laser Optical System on a z-stage

• 1064 nm pulsed laser

• Laser in sync with the DAQ Clock

Ongoing & future studies

• Characterize Chip functionality

• Tests on validation logic

• Dead time evaluation

• Uniformity & delay of the array response

• Study time resolution/efficiency with 

2D scan, investigating sub-pixel structure

Time Of Arrival (TOA) of a single pixel in 
high light conditions (17-17)
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DUT & Trigger Alignment
A Peculiar Approach
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https://gitlab.cern.ch/corryvreckan/corryvreckan/-

/tree/master/src/modules/AnalysisMaterialBudget

• High DCR of dSiPM makes alignment of DUT and the trigger 

reference complicated (DCR/MIP event distinction impossible before

alignment)

• Used Corryvreckan Material Budget Imaging (MBI) 

• The software reconstructs the tracks and evaluates the scattering 

angle at the DUT z-position (proportional to Material Budget)

• The MB is minimized at the position of the dSiPM, which is then

easily located

https://gitlab.cern.ch/corryvreckan/corryvreckan/-/tree/master/src/modules/AnalysisMaterialBudget
https://gitlab.cern.ch/corryvreckan/corryvreckan/-/tree/master/src/modules/AnalysisMaterialBudget
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Software used for the analysis
Corryvreckan

Corryvreckan use hit (pixels above threshold) 

and Clusters (groups of adjacent hits) to 

reconstruct particles trajectories

D-SiPM

• Real Track

• Hit

• Cluster

• Cluster center

• Reconstructed

Track

• Residuals

| Characterisation of a digital SiPM in 150 nm CMOS Imaging Technology | Gianpiero Vignola 02-Mar-2023

MIMOSA 26



DESY. Page 18

Analysis Chain
Using Corryvreckan
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Data Decoding
Clustering & 

Tracking

Alignment & 

DUT Association

DUT Association 

& Analysis

• Raw Telescope & dSiPM data 

acquired in TB are decoded

into a format accessible to 

Corryvreckan

• Hitmap and Timestamp is

reconstructed event by event 

for each detector involved

• Cluster of hits in 

the reference telescope are 

identified and used in the 

reconstruction of the MIP 

Track.

• Spatial and temporal cuts

are applied to associate 

clusters with Tracks

• Translations and rotations of 

the telescope and 

DUT planes are performed

• Multiple iterations maximize

accuracy in tracks 

reconsrtuction

• DUT clusters are associated

with the reconstructed tracks

• The response of dSiPM in MIP 

detection is analyzed. it is

possible to determine spatial

resolution, temporal resolution, 

efficiency, Cluster size, etc.


