

# Large-area passive CMOS sensors for radiation tolerant hybrid pixel detectors

Trento Workshop 2023

Yannick Dieter, J. Dingfelder, F. Hügging, H. Krüger

Physikalisches Institut der Universität Bonn





### WHY CMOS PROCESS?

- Hybrid pixel detectors: Sensor + R/O chip
- Use commercial high-resistive CMOS processes for planar sensor production:
  - Large wafers (200 mm)
  - High production through-put, low costs
  - Poly-silicon resistors  $\rightarrow$  connection to bias grid
  - MIM-capacitors for AC coupling → no leakage current compensation circuit needed
  - Metal layers for redistribution → no enlarged inter-gap pixels
- No active components → **passive CMOS sensors**



[Pohl, David-Leon: 3D-Silicon and Passive CMOS Sensors for Pixel Detectors in High Radiation Environments]



#### PASSIVE CMOS SENSORS USING LFOUNDRY PROCESS

#### Large pixel prototype

- 50 x 250 um<sup>2</sup> pixels, ATLAS IBL planar geometry
- Performance comparable to ATLAS IBL sensors after irradiation
   > 1 x 10<sup>15</sup> neq/cm<sup>2</sup>
- Investigation of AC-coupling schema, pixel biasing schemes (bias dot vs. resistor biasing)

#### **Test structures**

- Many structures produced (> 15)
- Varying designs: guard rings, pixel isolation, implantation geometries
- Investigations of break down with TID (2 master theses)
- $\rightarrow$  Identified enhanced guard ring structure
- Investigation of sensor capacitances (2 bachelor theses)

#### Small pixel prototype

• 50 x 50 um<sup>2</sup> pixels, ATLAS ITk pixel geometry



#### Sensor for ATLAS ITk modules

- 50 x 50 um<sup>2</sup> pixels, 25 x 100 um<sup>2</sup> pixels
- Full-size ATLAS ITk pixel modules
- RD53A and RD53B compatible



Dedicated design





#### Byproducts of DMAPS efforts

[https://doi.org/10.1016/j.nima.2020.164130]



### **PIXEL SENSOR DESIGN**

- **N-in-p** pixel sensor in 150 nm LFoundry technology for **ATLAS-ITk**
- Float-Zone wafers: ~8 kΩcm bulk resistivity, **150 µm thin**
- Different pixel designs:
  - 50 x 50  $\mu m^2$  and 25 x 100  $\mu m^2$  pixels
  - Poly-silicon as bias resistor ( $R_{bias} \sim 4.6 M\Omega$ )
  - DC- or AC-coupled sensors (C<sub>AC</sub> ~560 fF)
- Reticle stitching to obtain large sensors (RD53-size)
- Mainly single-chip sensors used for characterisation
- Irradiated at Bonn Isochronous cyclotron to  $2 \times 10^{15} n_{eq}/cm^2$  and  $5 \times 10^{15} n_{eq}/cm^2$





#### **RETICLE STITCHING**

- CMOS reticle: ~  $1 \text{ cm}^2 \rightarrow \text{limits size of sensor}$
- To produce larger sensors  $\rightarrow$  reticle stitching
- Requires that sensor can be subdivided into smaller blocks



• Different reticles are illuminated one after another and stepped accordingly

 $\rightarrow$  Size of sensor not any more limited by reticle size

 $\rightarrow$  Quad-module sensors with size of **4 x 4 cm<sup>2</sup>** 









- Production yield: ~80 %
- Similar behaviour for all sensors → **process variations negligible**
- Before irradiation:
  - Breakdown voltage: ~ 220 V
- After irradiation:
  - No breakdown visible up to 400 V / 600 V for both fluences
  - Leakage current in agreement with requirements for ATLAS ITk





#### **CV-CURVES**

- Measurement of bulk capacitance using bias box and LCR-meter
- Measurement precision of 0.5 pF, f = 10 kHz
- HV connected to back side, GND connected to bias grid (connected to all pixels)
- Full depletion voltage
  - 50 x 50 um<sup>2</sup>: ~35 V (→ 8–9 kΩcm)
  - 25 x 100 um<sup>2</sup>: ~40 V
    - → Slightly larger full depletion depth due to stronger lateral expansion of depletion zone in rectangular geometry







<u>More information about setup/method:</u> https://iopscience.iop.org/article/10.1088/ 1748-0221/16/01/P01029

**PIXEL CAPACITANCE** 

- Measurement of pixel capacitance with PixCap65 using CBCM
- Measurement precision: 0.3 fF
  - Allows measurement of capacitance of single pixel
- Shown values include parasitics (routing, bump-bonds) of 10 fF
- Dominant contribution in this design: Capacitance between p-stop and pixel implant (see referenced paper)
- Pixel capacitance:
  - 50 x 50 um<sup>2</sup>: ~35 fF
  - 25 x 100 um<sup>2</sup>: ~51 fF
    - → due to larger area (C ~ A) and smaller distance (C ~ 1/d)







#### **ELECTRONIC NOISE**

- Noise measured in threshold scan using the Linear front-end of the RD53A readout chip
  - Noise: steepness of s-curve
- Before irradiation: ~85 e electronic noise
   → No difference between sensor variants observed
- After irradiation:
  - ~100 e electronic noise (DC-coupled)
  - Noise remains the same for AC-coupled detectors
    - $\rightarrow$  DC-component of noise is blocked





#### **TESTBEAM SETUP**

- Testbeam done at DESY
  - Perpendicular, 5 GeV electron beam, trigger rate: 3 5 kHz
- DUT installed into telescope setup (EUDET-type)
  - 6 Mimosa26 planes  $\rightarrow$  5 um spatial resolution
  - ATLAS FE-I4 plane  $\rightarrow$  25 ns time-stamping capabilities
    - $\rightarrow$  precise tracking + proper time-stamping
- DUT read out using BDAQ53 R/O system [10.1016/j.nima.2020.164721]





Cooling box with

DUT (-15 °C)



### **CHARGE COLLECTION**

- Charge measured using high precision TDC-method
- After  $5 \times 10^{15} n_{eo}/cm^2$ : 5300 e charge signal @ 600 V





- Before irradiation:
  - **~ 12000 e charge signal** (full depletion)
- Charge collection efficiency after irradiation:
  - 2 x 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>: ~ 85 % (10500 e) @ 300V
  - **5 x 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>: ~ 45 %** (5300 e) @ 600V



**BULK RESISTIVITY** 

- Using 75 e/h-pairs per um:
  - Charge signal can be translated into depletion depth (assuming only depleted region contributes to signal)
- Extracted bulk resistivity: 8 9 kΩcm
  - Fully depleted at around 30 40 V
     (150 um thin FZ-bulk)
- In agreement with CV-measurements

$$d \,[\mu \mathrm{m}] \approx 0.3 \sqrt{V_{\mathrm{bias}} \,[\mathrm{V}] \cdot \rho_{\mathrm{bulk}} \,[\Omega \,\mathrm{cm}]}$$





### **HIT-DETECTION EFFICIENCY NEAR STITCHING LINE**

- Investigate efficiency close to stitching line
- No efficiency drop near stitching line observed
  - → Stitching works!





#### **HIT-DETECTION EFFICIENCY**

- Hit-detection efficiency measured using 5 GeV electrons at DESY
- Detector tuned to ~1200 e threshold with noise occ. < 10<sup>-6</sup>
- Before irradiation:
  - Fully efficient at very low bias voltage (~5V)
  - At 80V: 99.8 % efficiency
- After irradiation:
  - ~99.7 % efficiency after 5 x 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>
  - Fulfills ATLAS ITk requirement (> 97 %)
- In-time hit efficiency (< 20 ns): > 99.4 % after  $5 \times 10^{15} n_{eq}/cm^2$





#### **IN-PIXEL EFFICIENCY/CHARGE**



- $\rightarrow$  Efficiency loss mainly in pixel corners
- → Can be explained with lower charge in pixel corners due to lower electric field and more charge sharing in pixel corners



- CONCLUSION
- Demonstrated that large-area passive CMOS pixels sensors compatible with the future ATLAS ITk readout chip can be manufactured
  - $\rightarrow$  Reticle stitching was successfully used
- Radiation hardness up to fluence of  $5 \times 10^{15} n_{eo}/cm^2$  demonstrated:
  - Sensors are functional up to 600 V
  - > 99 % (in-time) hit-detection efficiency (@ > 400 V)
  - Charge signal at 600V: ~ 5300 e  $(5 \times 10^{15} n_{en}/cm^2)$
- Cost-effective solution for pixel sensors of large-area detectors
- Suitable for radiation harsh environments like ATLAS/CMS exp.





## **THANK YOU FOR YOUR ATTENTION**

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)



<u>More information about setup/method:</u> https://iopscience.iop.org/article/10.1088/ 1748-0221/16/01/P01029

**PIXEL CAPACITANCE** 

- Measurement of pixel capacitance using PixCap65 using CBCM
- Measurement precision: 0.3 fF
  - Allows measurement of capacitance of single pixel
- Shown values include parasitics (routing, bump-bonds) of 10 fF
- Dominant contribution in this design: Capacitance between p-stop and pixel implant (see referenced paper)
- Pixel capacitance:
  - 50 x 50 um<sup>2</sup>: ~35 fF
  - 25 x 100 um<sup>2</sup>: ~51 fF
    - → due to larger area (C ~ A) and smaller distance (C ~ 1/d)







#### **CROSS-TALK**

- 10 % cross-talk measured with convential 25 x 100 um<sup>2</sup> sensors measured using the RD53A readout chip
  - → Due to unavoidable overlap of metal layer and pixel implant
- No overlap for passive CMOS sensors
- No cross-talk measured for passive CMOS sensors
  - 50 x 50 um<sup>2</sup>: < 0.6 % cross-talk (minimal measurable cross-talk)
  - 25 x 100 um<sup>2</sup>: < 2.5 % cross-talk (minimal measurable cross-talk)

cross-talk [%] = 
$$\frac{\mu_{\text{reg}}}{\mu_{\text{x}} \cdot n_{\text{inj}}} \times 100$$







**Overlap of metal** 

layer and pixel

implant



### **TRACK RECONSTRUCTION USING BTA**

- Data analysed with beam telescope analysis (BTA): https://github.com/SiLab-Bonn/beam\_telescope\_analysis
- Kalman Filter algorithm used for track fitting (unbiased residuals)
- Hit-detection efficiency: # number of track assoc. to DUT / # total number of tracks

12

• Association distance: 120 um





#### **CHARGE MEASUREMENTS**

- Instead of on-chip charge measurement (ToT) use TDC-technique to precisely measure charge
  - Discriminator output signal (length ~ charge) sampled with 640 MHz
  - 1.5625 ns discretisation error
- Precise charge calibration using X-ray sources possible for every detector

<u>For simplicity:</u> Consider only single-hit events



Measurement of charge collection behaviour of pixel detector



#### **IN-PIXEL EFFICIENCY/CHARGE**



- $\rightarrow$  Efficiency loss mainly in pixel corners
- → Can be explained with lower charge in pixel corners due to lower electric field and more charge sharing in pixel corners



#### **STITCHING AND BIASING**

- Sensor size > reticle size → **reticle stitching** required
- Different reticles:



• Repeated for different designs:





- **Resistor biasing** for every pixel flavors, likely benefitial to prevent cross-talk
- Bias resistor: ~ **4.5 MΩ**



• MIM capacitators for AC-coupling: 0.56 pF





### **IN-TIME EFFICIENCY MEASUREMENT**

35

- At the LHC, particle bunches collide every 25 ns
  - $\rightarrow$  Necessary to detect all hits of a single collision within 25 ns to disentagle them

→ In-time efficiency: "Probability to detect a hit within a given time window"

Important is variation of hit delay: "time-walk"



Mean

Hit delay: time between trigger



100.0



#### **IN-TIME EFFICIENCY MEASUREMENT**

- At the LHC, particle bunches collide every 25 ns
  - $\rightarrow$  Necessary to detect all hits of a single collision within 25 ns to disentagle them

→ In-time efficiency: "Probability to detect a hit within a given time window"

- Important is variation of hit delay: "time-walk"
- Mainly influenced by the design of analogue front-end

 $\epsilon_{\rm in-time} = \epsilon_{\rm hit} \times P_{\Delta t}$ 

- Hit delay in test beam is measured by recording the difference of scintillator signal and discriminator output using TDC-method
- Define a time window: 20 ns



in-time efficiency

"regular" efficiency



Lower

### **IN-TIME HIT-DETECTION EFFICIENCY**

- Measurements done using the Linear front-end of the RD53A readout chip
- For sufficient high bias voltage: In-time efficiency larger than ATLAS ITk requirement (> 97 %)
- Reason for lower in-time efficiency at smaller bias voltage:
  - Smaller charge signal due to smaller depletion depth (only depleted volume contributes)
  - Larger hit delay variations ( $\rightarrow$  time-walk)

| in-time efficiency (in-time probability) |                         | $2 \times 10^{15} n_{eq}^{2}/cm^{2}$ |       | 5 x 10 <sup>15</sup> n <sub>eq</sub> /cm <sup>2</sup> |       |
|------------------------------------------|-------------------------|--------------------------------------|-------|-------------------------------------------------------|-------|
|                                          |                         | 100 V                                | 400 V | 400 V                                                 | 600 V |
|                                          | Regular efficiency / %  | 98.74                                | 99.77 | 99.16                                                 | 99.76 |
|                                          | In-time probability / % | 97.14                                | 99.82 | 97.29                                                 | 99.65 |
|                                          | In-time efficiency / %  | 95.91                                | 99.59 | 96.47                                                 | 99.41 |



#### Charge-Based Capacitance Measurement (CBCM)

• Periodic switching of switches S1 and S2 lead to average current

$$C_{d} = \frac{Q}{V_{in}} = \frac{\int_{0}^{T} I(t) dt}{V_{in}} = \frac{\frac{1}{T} \int_{0}^{T} I(t) dt}{f \cdot V_{in}} = \frac{I_{avg}}{f \cdot V_{in}}$$

$$V_{in} = \frac{\int_{0}^{I_{avg}} I(t) dt}{V_{in}} = \frac{I_{avg}}{f \cdot V_{in}}$$
More information about setup/method:

https://iopscience.iop.org/article/10.1088/ 1748-0221/16/01/P01029





#### THE RD53A READOUT CHIP

- Signal processing → **Fast charge digitisation**
- RD53A prototype readout chip for ATLAS/CMS pixel detectors:
  - Demonstrate suitability of 65 nm CMOS process for HL-LHC
  - Choose optimal analogue front-end design
- 400 x 192 pixels with size of 50 x 50 μm<sup>2</sup>
- In this work: Linear front-end used for sensor characterisation



