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WHY CMOS PROCESS?
● Hybrid pixel detectors: Sensor + R/O chip

● Use commercial  high-resistive CMOS processes for planar 
sensor production:

– Large wafers (200 mm)

– High production through-put, low costs

– Poly-silicon resistors  connection to bias grid→
– MIM-capacitors for AC coupling  no leakage current →

compensation circuit needed

– Metal layers for redistribution  no enlarged inter-gap →
pixels

● No active components  → passive CMOS sensors

[Pohl, David-Leon: 3D-Silicon and Passive CMOS Sensors for Pixel Detectors in High Radiation Environments]
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PASSIVE CMOS SENSORS USING LFOUNDRY PROCESS

• Many structures produced (> 15)
• Varying designs: guard rings, pixel 

isolation, implantation geometries
• Investigations of break down with 

TID (2 master theses)

   →  Identified enhanced guard ring 
structure

• Investigation of sensor capacitances 
(2 bachelor theses)

• 50 x 250 um² pixels, ATLAS IBL 
planar geometry
• Performance comparable to ATLAS 

IBL sensors after irradiation              
> 1 x 1015 neq/cm²
• Investigation of AC-coupling 

schema, pixel biasing schemes (bias 
dot vs. resistor biasing)

• 50 x 50 um² pixels, ATLAS ITk pixel 
geometry

9 test structures bonded to test PCB

20162016

Prototype on ATLAS FE-I4 

20152015

Small pixel prototype on FE65-p2

20182018
Small pixel prototypes on RD53A

20192019

Single, dual, quad module sensors

20202020

• 50 x 50 um² pixels, 25 x 100 um² 
pixels
• Full-size ATLAS ITk pixel modules
• RD53A and RD53B compatible

Byproducts of DMAPS efforts Dedicated design

Large pixel prototype Test structures Small pixel prototype Sensor for ATLAS ITk modules

From
 D

.-L. Pohl Trento 2020

]

[https://doi.org/10.1016/j.nima.2020.164130]

https://indico.cern.ch/event/813597/contributions/3727707/attachments/1989191/3315713/Trento2020_DavidPohl.pdf
https://doi.org/10.1016/j.nima.2020.164130
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PIXEL SENSOR DESIGN

Single Sensors
 

Double Sensors
 

Quad Sensors

● N-in-p pixel sensor in 150 nm LFoundry technology for ATLAS-ITk

● Float-Zone wafers: ~8 kΩcm bulk resistivity, 150 μm thin

● Different pixel designs:

– 50 x 50 μm² and 25 x 100 μm² pixels

– Poly-silicon as bias resistor (Rbias ~4.6 MΩ)

– DC- or AC-coupled sensors (CAC ~560 fF)

● Reticle stitching to obtain large sensors (RD53-size)

● Mainly single-chip sensors used for characterisation

● Irradiated at Bonn Isochronous cyclotron to                                                        
2 x 1015  neq/cm² and 5 x 1015  neq/cm²
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RETICLE STITCHING

● CMOS reticle: ~ 1 cm²  limits size of sensor→
● To produce larger sensors  → reticle stitching

● Requires that sensor can be subdivided into smaller blocks

● Different reticles are illuminated one after another and stepped accordingly

 → Size of sensor not any more limited by reticle size

 → Quad-module sensors with size of 4 x 4 cm²  

centreedgescorner
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IV-CURVES

● Production yield: ~80 %

● Similar behaviour for all sensors  → process variations negligible

● Before irradiation:

– Breakdown voltage: ~ 220 V 

● After irradiation:

– No breakdown visible up to 400 V / 600 V for both fluences

– Leakage current in agreement with requirements for ATLAS ITk

Yield cut 
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CV-CURVES
● Measurement of bulk capacitance using bias box and LCR-meter

● Measurement precision of 0.5 pF, f = 10 kHz

● HV connected to back side, GND connected to                                   
bias grid (connected to all pixels)

● Full depletion voltage

– 50 x 50 um²: ~35 V (  8–9 k→ Ωcm)

– 25 x 100 um²: ~40 V

 → Slightly larger full depletion depth due to                                    
     stronger lateral expansion of depletion zone                             
     in rectangular geometry 
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PIXEL CAPACITANCE
● Measurement of pixel capacitance with PixCap65 using CBCM

● Measurement precision: 0.3 fF

– Allows measurement of capacitance of single pixel

● Shown values include parasitics (routing, bump-bonds)             
of 10 fF

● Dominant contribution in this design: Capacitance between      
p-stop and pixel implant (see referenced paper)

● Pixel capacitance:

– 50 x 50 um²: ~35 fF

– 25 x 100 um²: ~51 fF

  → due to larger area (C ~ A) and smaller distance                  
     (C ~ 1/d)

More information about setup/method:
https://iopscience.iop.org/article/10.1088/
1748-0221/16/01/P01029

https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01029
https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01029
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ELECTRONIC NOISE
● Noise measured in threshold scan using the Linear 

front-end of the RD53A readout chip

– Noise: steepness of s-curve

● Before irradiation: ~85 e electronic noise

 → No difference between sensor variants observed 

● After irradiation:

– ~100 e electronic noise (DC-coupled)

– Noise remains the same for AC-coupled 
detectors

 → DC-component of noise is blocked
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TESTBEAM SETUP
● Testbeam done at DESY 

– Perpendicular, 5 GeV electron beam, trigger rate: 3 - 5 kHz

● DUT installed into telescope setup (EUDET-type)

– 6 Mimosa26 planes  5 um spatial resolution→
– ATLAS FE-I4 plane  25 ns time-stamping capabilities→

 → precise tracking + proper time-stamping 

● DUT read out using BDAQ53 R/O system [10.1016/j.nima.2020.164721]
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ne

DURANTA DURANTA

DUT

Beam

Cooling box with 
DUT (-15 °C)

DUT: Device Under Test

https://www.sciencedirect.com/science/article/pii/S0168900220311189
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CHARGE COLLECTION

                             5 x 1015 neq/cm2 | 600 V | DC-sensor 

● Before irradiation:

– ~ 12000 e charge signal (full depletion)

● Charge collection efficiency after irradiation:

– 2 x 1015 neq/cm2: ~ 85 % (10500 e) @ 300V

– 5 x 1015 neq/cm2: ~ 45 % (5300 e) @ 600V

● Charge measured using high precision TDC-method

● After 5 x 1015 neq/cm2: 5300 e charge signal @ 600 V

Artificial higher 
MPV due to 

threshold cutting 
into spectrum
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BULK RESISTIVITY
● Using 75 e/h-pairs per um:

– Charge signal can be translated into depletion 
depth (assuming only depleted region 
contributes to signal)

● Extracted bulk resistivity: 8 – 9 kΩcm

– Fully depleted at around 30 – 40 V                 
(150 um thin FZ-bulk)

● In agreement with CV-measurements
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HIT-DETECTION EFFICIENCY NEAR STITCHING LINE
● Investigate efficiency close to stitching line

● No efficiency drop near stitching line observed

 → Stitching works!
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HIT-DETECTION EFFICIENCY
● Hit-detection efficiency measured using 5 GeV electrons at DESY

● Detector tuned to ~1200 e threshold with noise occ. < 10-6

● Before irradiation:

– Fully efficient at very low bias voltage (~5V)

– At 80V: 99.8 % efficiency

● After irradiation:

– ~99.7 % efficiency after  5 x 1015 neq/cm2 

– Fulfills ATLAS ITk requirement (> 97 %)

● In-time hit efficiency (< 20 ns): > 99.4 % after  5 x 1015 neq/cm2 

Efficiency | DC-coupled 150 um thin passive CMOS
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IN-PIXEL EFFICIENCY/CHARGE

 → Efficiency loss mainly in pixel corners

  → Can be explained with lower charge in pixel corners due to lower        
      electric field and more charge sharing in pixel corners

In-pixel efficiency | non-irrad. | 80 V In-pixel efficiency | 5 x 1015 neq/cm² | 400 V In-pixel charge | 5 x 1015 neq/cm² | 400 V

Efficiency Charge
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CONCLUSION
● Demonstrated that large-area passive CMOS pixels sensors compatible with the future ATLAS ITk readout 

chip can be manufactured

 → Reticle stitching was successfully used

● Radiation hardness up to fluence of 5 x 1015 neq/cm² demonstrated:

– Sensors are functional up to 600 V

– > 99 %  (in-time) hit-detection efficiency (@ > 400 V)

– Charge signal at 600V: ~ 5300 e (5 x 1015 neq/cm²)

● Cost-effective solution for pixel sensors of large-area detectors

● Suitable for radiation harsh environments like ATLAS/CMS exp.
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THANK YOU FOR YOUR ATTENTION

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg 
(Germany), a member of the Helmholtz Association (HGF)
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PIXEL CAPACITANCE
● Measurement of pixel capacitance using PixCap65 using CBCM

● Measurement precision: 0.3 fF

– Allows measurement of capacitance of single pixel

● Shown values include parasitics (routing, bump-bonds)             
of 10 fF

● Dominant contribution in this design: Capacitance between      
p-stop and pixel implant (see referenced paper)

● Pixel capacitance:

– 50 x 50 um²: ~35 fF

– 25 x 100 um²: ~51 fF

  → due to larger area (C ~ A) and smaller distance                  
     (C ~ 1/d)

More information about setup/method:
https://iopscience.iop.org/article/10.1088/
1748-0221/16/01/P01029

https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01029
https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01029
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CROSS-TALK
● 10 % cross-talk measured with convential 25 x 100 um² sensors 

measured using the RD53A readout chip

 → Due to unavoidable overlap of metal layer                                              
and pixel implant

● No overlap for passive CMOS sensors 

● No cross-talk measured for passive CMOS sensors

– 50 x 50 um²: < 0.6 % cross-talk (minimal measurable cross-talk)

– 25 x 100 um²: < 2.5 % cross-talk (minimal measurable cross-talk)

Overlap of metal 
layer and pixel 

implant

Conventional 
sensor

CM
O

S sensor
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TRACK RECONSTRUCTION USING BTA
● Data analysed with beam telescope analysis (BTA): https://github.com/SiLab-Bonn/beam_telescope_analysis

● Kalman Filter algorithm used for track fitting (unbiased residuals)

● Hit-detection efficiency: # number of track assoc. to DUT / # total number of tracks 

● Association distance: 120 um
Noisy pixel masking

Clustering

Track finding

Track fitting

Result analysis
600 400 200 0 200 400 600y-residual / m

100

101

102

103

104

105

Ent
ries

Gauss fit: A = 102621.3 ± 679.1= 0.3 ± 0.1 m= 19.1 ± 0.1 m
DataRMS: 23.2 m

https://github.com/SiLab-Bonn/beam_telescope_analysis
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CHARGE MEASUREMENTS 
● Instead of on-chip charge measurement (ToT) use TDC-technique to precisely measure charge

– Discriminator output signal (length ~ charge) sampled with 640 MHz

– 1.5625 ns discretisation error

● Precise charge calibration using  X-ray sources possible for every detector

● Measurement of charge collection behaviour of pixel detector

For simplicity: 
Consider only 
single-hit events
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IN-PIXEL EFFICIENCY/CHARGE

 → Efficiency loss mainly in pixel corners

  → Can be explained with lower charge in pixel corners due to lower        
      electric field and more charge sharing in pixel corners

In-pixel efficiency | non-irrad. | 80 V In-pixel efficiency | 5 x 1015 neq/cm² | 400 V In-pixel charge | 5 x 1015 neq/cm² | 400 V

Efficiency Charge
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STITCHING AND BIASING
● Sensor size > reticle size  → reticle stitching required

● Different reticles:

● Repeated for different designs:

Edge pixel reticles Center pixel reticles

● Resistor biasing for every pixel flavors, likely 
benefitial to prevent cross-talk

● Bias resistor: ~ 4.5 MΩ

● MIM capacitators for AC-coupling: 0.56 pF

50 x 50 um² 25 x 100 um² 
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IN-TIME EFFICIENCY MEASUREMENT
● At the LHC, particle bunches collide every 25 ns

 → Necessary to detect all hits of a single collision within 25 ns to disentagle them

 → In-time efficiency:  „Probability to detect a hit within a given time window“

● Important is variation of hit delay: „time-walk“

● Mainly influenced by the design of analogue front-end

The smaller the 
input charge, 
the larger the 
hit delay

Hit delay: time between trigger   
                    and hit detection
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IN-TIME EFFICIENCY MEASUREMENT
● At the LHC, particle bunches collide every 25 ns

 → Necessary to detect all hits of a single collision within 25 ns to disentagle them

 → In-time efficiency:  „Probability to detect a hit within a given time window“

● Important is variation of hit delay: „time-walk“

● Mainly influenced by the design of analogue front-end

● Hit delay in test beam is measured by recording                                                                                                                      
the difference of scintillator signal and                                                                                                                             
discriminator output using TDC-method

● Define a time window: 20 ns

20 ns

in-time efficiency

“regular” efficiency

in-time probability

= * 
time-walk charge spectrum
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IN-TIME HIT-DETECTION EFFICIENCY
● Measurements done using the Linear front-end of the RD53A readout chip

● For sufficient high bias voltage: In-time efficiency larger than ATLAS ITk requirement (> 97 %)

● Reason for lower in-time efficiency at smaller bias voltage:

– Smaller charge signal due to smaller depletion depth (only depleted volume contributes)

– Larger hit delay variations (  time-walk)→
– Lower in-time efficiency (in-time probability) 2 x 1015 neq/cm² 5 x 1015 neq/cm²

100 V 400 V 400 V 600 V

Regular efficiency  / % 98.74 99.77 99.16 99.76

In-time probability / % 97.14 99.82 97.29 99.65

In-time efficiency / % 95.91 99.59 96.47 99.41
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Charge-Based Capacitance Measurement (CBCM)
● Periodic switching of switches S1 and S2 lead to average current

More information about setup/method:
https://iopscience.iop.org/article/10.1088/
1748-0221/16/01/P01029

https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01029
https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01029


28.02.2023 28Trento Workshop 2023 – dieter@physik.uni-bonn.de

THE RD53A READOUT CHIP

● Signal processing  → Fast charge digitisation

● RD53A prototype readout chip for ATLAS/CMS pixel detectors:

– Demonstrate suitability of 65 nm CMOS process for HL-LHC

– Choose optimal analogue front-end design

● 400 x 192 pixels with size of 50 x 50 μm²

● In this work: Linear front-end used for sensor characterisation

11.8 mm

20 mm
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The RD53A readout chip
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