

Silicon Strip Detectors in Physics: From Nuclear Physics to Space Applications

<u>Gianluigi Silvestre</u>, Alberto Oliva, Alessio Ubaldi, Jiang Yazou, Luca Tosti, Mattia Barbanera, Maura Graziani, Valerio Formato

The typical silicon strip detector

- Set of p-n junction diodes operated at reverse bias
- Charged particle crossing induces a current on the segmented electrodes (strips)
- Underlying capacitive coupling network influences the signal behaviour of the detector (charge sharing, backplane charge losses ...)

Typical capacitance values

 C_i = interstrip capacitance $\approx 1 \text{ pF/cm}$ C_b = backplane capacitance $< C_i/5$ C_g = guardring capacitance $\approx C_i/20$ C_{ii} = first-to-third strip capacitance $<< C_i$

Cd = *decoupling capacitance* ≈ 10 *pF/cm* >> *Ci, Cb, Cg, Cii*

One detector, many uses

- Proven technology used since the 80s
- Still the natural choice for large area coverage
- Detector parameters can be tuned for the desired performance
- Wide range of applications, from low energy (hundreds of MeV/u) nuclear physics to space-borne experiments

Some applications have very stringent constraints on some of the parameters, for example:

Detector Parameter	Main effect	Constraints		
Readout pitch	Spatial resolution	Area to cover, readout input lines footprint		
Number of channels	Cost	Power consumption, data bandwidth needed		
Thickness	Deposited charge, charge loss	Mechanical strength, fragmentation and MCS		
Length	Strip capacitance	Noise levels, production capabilities		

Space application (present): AMS-02 tracker

- Nine layers of double sided silicon detectors
- 10 um (30 um) spatial resolution in bending (non bending) plane
- Momentum resolution ≈10% @10 GeV
- High dynamic range front end for charge measurement
- Long (28-60cm) "ladders" with daisychained sensors
- Total covered area approx 7 m²
- Total of 200k channels for ≈200 watt

AMS-02 tracker

To connect electrically all the sensors in a ladder, all the strips are daisy-chained with a 25 um Al wire through ultrasonic bondings

AMS-02 tracker

Spatial resolutions of about 10 um can be achieved even with a 110 um readout pitch with the use of "floating" strips: intermediate electrodes implanted but not read-out

AMS-02 tracker

- From Ramo's theorem: only the closest electrode should have signal ("digital" ٠ readout)
 - Capacitive coupling of strips shares the signal
 - Impact point can be better evaluated ٠
 - The floating (non-readout) strips helps this charge sharing
- Charge sharing improves spatial resolution and allows to correct for main strip electronic saturation effects

Space application: present and future

Most of space detectors for charged cosmic ray and γ-ray measurements require solid state tracking systems based on Si-µstrip sensors.

Si-µstrip detectors, at the moment, are the only solution to instrument *large area detectors* with larger number of electronics channels coping with the *limitations on power consumption in space*

	Mission Start	Si-sensor area	Strip- length	Readout channels	Readout pitch	Spatial resolution		
ermi-LAT	2008	~ 74 m²	38 cm	~ 880 10^3	228 um	~ 66 um		
AMS-02	2011	~ 7 m²	29-62 cm	~ 200 10^3	110 um	~ 7 um		
DAMPE	2015	~ 7 m²	38 cm	~ 70 10^3	242 um	~ 40 um		
Future Missions								

	Planned operations	Si-sensor area	Strip-length	Readout channels	Readout pitch	Spatial resolution
HERD	2030	~ 35 m²	48-67 cm	~ 350 10^3	~ 242 um	~ 40 um
ALADInO	2050	~ 80-100 m ²	19-67 cm	~ 2.5 10^6	~ 100 um	~ 5 um
AMS-100	2050	~ 180-200 m ²	~ 100 cm	~ 8 10^6	~ 100 um	~ 5 um

Duranti, M.; Vagelli, V.; Ambrosi, G.; Barbanera, M.; Bertucci, B.; Catanzani, E.; Donnini, F.; Faldi, F.; Formato, V.; Graziani, M.; Ionica, M.; Moriconi, L.; Oliva, A.; Serpolla, A.; Silvestre, G.; Tosti, L. <u>Advantages and Requirements in</u> **Time Resolving Tracking for Astroparticle Experiments in Space**. Instruments **2021**, 5, 20.

https://doi.org/10.3390/instruments5020020

Space application (future): HERD

<u>High Energy Radiation Detector (HERD) on the Chinese</u> <u>Space Station (2026-2027)</u>

- LYSO calorimeter
- Small TRD for hadronic energy calibration
- 5 sides PSD
- 5 sides Tracker
 - 60 m^2 area
 - 200-400k channels
 - \bullet ~ 100W for FE
 - \bullet ~ 200W for read-out

Space application (future): ALADInO

Antimatter Large Acceptance Detector In Orbit (ALADInO)

- Orbiting on L2
- LYSO calorimeter
- 2π PSD and ToF
- 3T (0.8T average) B-field by "hot" super-conducting magnet MgB2

2π Tracker

- 80 m2 area
- 1.5M channels
- ~1kW available

Space application: need for large area coverage

- Daisy-chain of silicon sensors allows for a large area without using any additional electronics
- Increase in noise can be kept under control even for long (≈ 1m) detectors
- Large area can be covered keeping number of channels (and power) under control

Low energy nuclear physics: the FragmentatiOn Of Target experiment

- Hadrontherapy energies (several hundreds of MeV per nucleon)
 - Target (tissue) fragmentation
 - Beam fragmentation
- Contribution of very short range secondary fragments (some um)
 - Non negligible dose deposited in the first part of the particle path
- FOOT will use the inverse kinematics approach

The FOOT silicon strip detector

- Measurement of cross-section of interest for hadrontherapy
- Strip detectors to track the fragments and estimate their charge
- *Table-top* experiment: data takings in different facilities (CNAO in Pavia, HIT in Heidelberg ...)
- Constraints on detector footprint, power consumption and data bandwidth

The FOOT silicon strip detector

- Silicon sensors made by Hamamatsu Photonics, 150um thick
- 96 mm \times 96 mm active area segmented in 1920 strips with a 50 μm implantation pitch
- "Floating strip" approach: readout pitch of 150 μ m, with two strips connected to readout every three
- Spatial resolution up to \approx 10 um with good charge resolution

Space application (future): PANGU

PAir-productioN Gamma-ray Unit (PANGU)

- Sub-Gev γ-ray telescope
- Avoid MCS degradation with less material "Target" (e.g. tungsten for FERMI-LAT)
- Thin silicon sensors act as photon converters and tracker

Detection principle: Fermi-LAT

Detection principle: PANGU!

Space application (future): POX

- Synergic development with the FOOT experiment
- Same silicon sensor and DAQ chain can be used
- Experimental verification of a PANGU approach
 - PANGU-like demonstrator (on ground) to validate the experiment (in space)
 - Reduced R&D cost (shared requirements with the FOOT experiment on the detectors)
 - Validation of the expected performance

FOOT/POX uStrip Tracker

- Table-top setup
- Modular design
- Modular DAQ electronics

17

- Readout parameters can be tuned for each experiment ٠
 - Trade-off between spatial and charge resolution ٠

Adapting existing sensors

Adapting existing sensors

- Readout parameters can be tuned for each experiment ٠
 - Trade-off between spatial and charge resolution •
- Example: better charge resolution from FOOT sensors for HERD Silicon ٠ Charge Detector prototyping
 - No need for a new silicon design and/or production

Adapting existing sensors

- The different bonding scheme simulates a detector with same readout pitch, but different strip width
- Charge collection is improved
- Charge non-linearity between readout strips is reduced

Adapting existing sensors

- Charge discrimination improved
- Higher signal collected
- Improved reconstruction efficiency for lower Z
- Trade-off with spatial resolution and high Z dynamic range

The same thin silicon sensor can be used for the detection of lower signal particles without the need of a new production

Conclusions

- Silicon strip detectors are still the main choice when power consumption and area to cover are crucial
- Good spatial resolutions (less than 10 micrometers) can be obtained exploiting analog readout and charge sharing between strips
- Possibility to estimate the charge (e.g AMS02, HERD ...) or the energy (e.g. FOOT) of the particle
- Synergic development (e.g FOOT/POX) can reduce the costs needed
- Adapting existing sensors (e.g. different bonding scheme) allows for low cost prototyping for future experiments

