

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761.

Pixel Detector Hybridisation with Anisotropic Conductive Adhesives (ACA)

Dominik Dannheim, Rui De Oliveira, <u>Janis Viktor Schmidt</u>, Peter Svihra, Mateus Vicente Barreto Pinto, Alexander Volker

Outline

Bonding with Anisotropic Conductive Adhesives (ACA) Electroless Nickel Immersion Gold plating (ENIG)

Results

Motivation

- Development of new interconnect process
 - Affordable option for prototyping
 - Difficult to obtain single-die hybridisation externally
- Maskless in-house post-processing and bonding
 - Single-die processing
 - Short turnaround time
- Wide range of applications
 - Hybridisation (tested with Timepix3, SPHIRD with 55-50 µm pitch)
 - Module integration (tested with MALTA with ~30 micron pad distance)
 - 100µPET, XIDER, PicoPix, Timespot

Timepix3

Introduction

- Anisotropic Conductive Adhesive (ACA) For
 - Anisotropic Conductive Film or Paste (ACF, ACP)
 - Embedded conductive particles in epoxy
 - ACFs are widely used for display production
 - \rightarrow Transfer to small pitch of hybrid pixel detectors
- Thermocompression bonding process
 - Anisotropic/Vertical electrical connection via compressed conductive particles
 - Permanent mechanical bonding via cured epoxy film

ENIG plating – need for increased height

Need for sufficiently large cavity volume between sensor and ASIC after bonding to fit excess adhesive

- **Volume** directly related to **plating height x**
- Developed approximate model for calculation •

Timepix3 assembly larger pads

Process workflow

Preparation

- Electrical testing
- Visual inspection
 - Scratches
 - Contamination
- Cleaning
 - Ultrasonic bath (if needed)
 - Plasma cleaning (Ar/O₂) and reduction (Ar/H₂)

Waver overview after electrical testing

Process workflow

Electroless Nickel

- Reaction on catalytic surface
- Initiation of reaction on pad
- Nickel layer also catalytic surface
- \rightarrow Self catalytic reaction
 - Pad heigh is time controlled
 - Continues until removal of sample

$2 H_2 PO_2^- + Ni^2 + 2 H_2 O \rightarrow 2 H_2 PO_3^- + H_2 + 2 H^+ + Ni_0$

Electroless Nickel

- Reaction on catalytic surface
- Initiation of reaction on pad
- Nickel layer also catalytic surface
- \rightarrow Self catalytic reaction
 - Pad heigh is time controlled
 - Continues until removal of sample

$2 H_2 PO_2^- + Ni^2 + 2 H_2 O \rightarrow 2 H_2 PO_3^- + H_2 + 2 H^+ + Ni_0$

Electroless Nickel

- Reaction on catalytic surface
- Initiation of reaction on pad
- Nickel layer also catalytic surface
- \rightarrow Self catalytic reaction
 - Pad heigh is time controlled
 - Continues until removal of sample

$2 H_2 PO_2^- + Ni^2 + + 2 H_2 O \rightarrow 2 H_2 PO_3^- + H_2 + 2 H^+ + Ni_0$

Immersion Gold

- Electrochemical reaction
 - Replacing nickel atoms with gold atoms
- Corrosion protection
- Thickness of ~100 nm

$Ni^0 + 2Au^+ \rightarrow Ni^{2+} + 2Au^0$

Challenges with ENIG

- Defective plating
 - Skip or step plating
 - Missing plating near edge
- →Diffusion controlled catalyst poisoning
 - Stabilizer and contamination are adsorbed on surface
 - Termination of reaction at a certain surface concentration

Missing plating at the edge

Skip plating

Step plating

Process development

- **Optimised chemistry**
 - Higher purity •
 - produced in clean room •
 - Adjustable stabiliser concentration •
- **Forced convection**

Plating of an individual pad

Process workflow

ACF bonding

- 1. Lamination ACF on chip
- 2. Bonding

Timepix3 ASIC

- Displacement of epoxy •
- Compression of conductive particle lacksquare(ideally 50%)
- Curing of epoxy resin (<5 second at 150 °C)

Process workflow

Testing and evaluation

- Cross-section
 - Pad distance
 - Alignment
- Source measurements in lab
- Test-beam measurements
- Further evaluation in future
 - Radiation hardness, electrical properties, mechanical strength...

Cross-section Timepix3-Timepix3 ACF dummy sample

Cross-section Timepix3 ASCI-sensor ACF sample

Sample 2: ~90% coverage of 14 µm ACF

Hit-map from Sr⁹⁰ illumination Timepix3

Evaluation of plating height and different ACF materials using Sr⁹⁰ exposure of electrical assemblies

	Part. diameter [µm]	Thickness [µm]	Part. density [pcs/mm²]	Bonding pressure [Mpa]	Sheet/reel
ACF 1	3	18	71k	30-80	sheet
ACF 2	3	14	60k	50-90	reel

02/03/2023

Cavity volume per pixel pad of Timepix3 ASICs as a function of plating height

TREDI 2023

Janis V. Schmidt et al. | Hybridisation with ACAs

At CERN SPS beam-test facility

• Using minimum-ionising particles (120 GeV/c pions)

Six tilted Timepix3 planes, DUT in the middle

At CERN SPS beam-test facility

Using minimum-ionising particles (120 GeV/c pions) 150 60 V bias

Six tilted Timepix3 planes, DUT in the middle

At CERN SPS beam-test facility

Using minimum-ionising particles (120 GeV/c pions) = ¹⁵⁰ 60 V bias

Six tilted Timepix3 planes, DUT in the middle

At CERN SPS beam-test facility

Using minimum-ionising particles (120 GeV/c pions) = 150 60 V bias

Six tilted Timepix3 planes, DUT in the middle

- High in-pixel efficiency at low thresholds
- Different behaviour at higher thresholds
 - 99.96% to 99.89% in the "good" area
 - 99.05% to 11.4% in the area with low plating
 85 DAC to 485 for 60 V bias
- Weak coupling in areas with low plating

Daisy-chain devices

Daisy-chain 6" quartz wafer with 625 μm thickness designed and produced at FBK

Study of ACA interconnection properties

- Low-pitch and large-pitch reliability
- Resistance measurements
- Mechanical analysis

Surface properties similar to typical ASICs and sensors

- Al metal pads 2.5 µm thick
- 950 nm thick passivation

	pitch	size in mm	connections	per wafer	type	diceable
160x160 20um	20 um	3.2 x 3.2	25600	36	grid	no
CLICpix2	25 um	3.2 x 3.2	16384	34	grid	no
400x400 25um	25 um	20 x 20	640000	5	grid	yes
Timepix3	55 um	14 x 14	65536	4	grid	no
Timepix3 islands	55 um	14 x 14	65536	4	grid	no
RD53	50 um	20 x 20	160000	4	grid	no
RD53 islands	50 um	20 x 20	160000	2	grid	no
70x70 140um	140 um	20 x 20	2112	3	peripheral	yes
10x10 1000um	1000 um	20 x 20	400	3	grid	yes
3x3 4500um	4500 um	20 x 20	36	1	grid	yes

02/03/2023

0 ACF links

Conclusion and Outlook

Successful hybridisation with Anisotropic Conductive Adhesive

- High efficiency in "good" areas
- Week coupling in the centre due to insufficient cavities
- Development of single-die ENIG process at CERN
- Further evaluation and improvement of parameters
 - Plating height
 - ACA properties (particle density, viscosity, volume...)
 - Flip-chip bonding (pressure, compression time...)
- Ageing and radiation-hardness studies
- Collaboration with more projects

Daisy-chain devices Testing

- Bonded peripheral-type device (mimic MALTA integration)
 - Used 2 mm ACF film (14 μm thickness)
- Good connection yield
 - Missing connections due to ACF lamination / mechanical damage
 - 2-wire measurement of resistivity, dominated by metal line length
- Ramping-up with plating/bonding/testing

Verified connections

Cluster size and charge

02/03/2023

Size map for associated clusters

50

Ū

100

150

200

cluster column

20

250

Electroless Nickel Immersion Gold plating (ENIG)

Topology for connection

lasma cleaning

5-8 min Ar/O2

5-8 min Ar/H₂

Zincate

45 – 60 s at RT

Surface activation

- Surface for particle compression
- Cavities between pads for excess epoxy
- Maskless single-die in-house postprocessing at CERN

Conditioner

1-3 min at RT

Acidic Al₂O₃

removal (pH: 3.4)

Remover

Nitric acid 30 %

Surface etching

30 s at RT

AI Etch

2-5 min at RT

Alkaline Al₂O₃

removal (pH: 11)

Zincate

45 s - 60 s at RT

Surface activation

ENIG plating

Zincate

45 s – 60 s at RT

Surface activation

Remover

Nitric acid 30 %

Surface etching

30 s at RT

Mounting

Toluene paint

Fiberglass plate

ENIG

Mask specific areas

Diffusion controlled catalyst poisoning

Stabilizer and contaminations poison catalytic surface of pad

- Poison is adsorbed on surface
- Faster diffusion to small pads
- Diffusion layer is reduced by convection
- Termination of reaction if burying of poison < adsorption of poison

Prepara

Linear

Nonlinear

ENIG plating

Influence of ACF thickness

Sample 1: 100% coverage of 18 µm ACF

Hit-map from Sr⁹⁰ illumination Timepix3

900

800

0

Sample 1: 100% coverage of 18 µm ACF

Sample 2:

~90% coverage of 14 µm ACF

Modifying ACF/ACP coverage

- ACF and ACP flows beyond the applied area
- Reduction of total adhesive volume possible
- Using the flow behaviour of ACF and ACP for a better connection
 - \rightarrow Possible yield improvement through gaps in the ACF/ACP coverage

02/03/2023

700

600

500

400 _ Hits Hits

200

100

0

700

600

500

400 _

Hits 1005

200

100

250

200

2 mr

150

pixel [y]

3,67

mm

100

Glass bonded on Timepix3 ASIC with ACF No plating vs. 11 µm plating height

2 mm 14µm ACF stripe Timepix3 ASIC w/o ENIG and glass

2 mm 14 μ m ACF stripe Timepix3 ASIC 11 μ m ENIG and glass

ACF bonding resistance measurement

- Test structure with 5 matrices of pads with different sizes
 - Resistance scales with the (pixel) pad size and film particle count
 - Acceptable resistance in hybrid pixel detectors is $\leq 100 \Omega$

Process workflow

Hip-chip bonder

Substrate

Preparation

- Electrical testing
- Visual inspection

ACF bonding

Some of the available ACFs

ACF	1	2	3	4	5
Part. diameter [µm]	3	3	3.5	10	3.2
Thickness [µm]	18	14	16	50	18
Particle density [pcs/mm ²]	71k	60k	23k	-	28k
Pressure [MPa]	30-80	50-90	40-90	30-50	40-80
Aligned	no	no	Particles at same depth	no	surface grid**
Sheet or reel	Sheet	Reel*	Sheet	Reel*	Reel*

*Reels are used in the industry mostly with a few mm width

**Microscope image of an aligned ACF on a CLICpix2 ASIC

reparatior

ENIG plating

Bonding

Testing

02/03/2023

Diffusion controlled catalyst poisoning

Stabilizer and contaminations are catalyst poison

- Poison is adsorbed on surface
- Faster diffusion to small pads
- Diffusion layer is reduced by convection
- Termination of reaction if burying of poison < adsorption of poison

Preparation

Electrical testing

Visual inspection

ENIG (UBM)

Nickel growth

Pad topology