

Performance studies of Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector Lucía Castillo García, on behalf of the ATLAS HGTD group - 28th February 2023

TREDI 2023 Trento, 28 February - 2 March 2023

Outline

- Motivation
- The ATLAS High Granularity Timing Detector (HGTD)
- Sensor activities in HGTD
- LGAD End-of-Lifetime
- LGAD performance with charged-particle beams
 - Collected charge, time resolution, hit efficiency
- Summary and outlook

Motivation for LGAD-based detectors

- Silicon pixel detectors are especially important for the precise determination of tracks and vertices, enabling the selection of interesting events through the identification of b-jets (b-tagging)
- Particle accelerators are improved to further probe the energy frontier delivering higher energies and increasing the number of collisions per unit time
- At High-Luminosity phase of the LHC (HL-LHC):
 - The instantaneous luminosity will be approximately a factor of ~5 higher than the LHC nominal values
 - Several LHC experiment sub-systems will require an upgrade in order to cope with the high rate, hit occupancy and radiation environment
- New solutions have to be found for the silicon sensors and the associated front-end electronics
- Interest to study Low Gain Avalanche Detectors (LGADs) and their performance at high fluences beyond 10¹⁵ n_{ed}/cm²
 - $\,\circ\,\,$ Excellent time resolution of about 30 ps before irradiation
 - Performance remains challenging due to degradation of the gain layer
 - o Investigate new doping materials (B, Ga), substrates and new geometries
 - Deliver thin sensors providing good time resolution, fine segmentation, radiation hardness

Why timing is so important?

- At the HL-LHC
 - $\,\circ\,$ Instantaneous luminosities up to $L\simeq 7.5\times10^{34}\,cm^{-2}\,s^{-1}$ (×5 current $L_{inst})$
 - Pile-up: $< \mu > = 200$ interactions per bunch crossing $\rightarrow \sim 1.5$ vertex/mm on average
 - Vertex reconstruction and physics objects performance of ATLAS will be significantly degraded in the forward region compared to the central region
 - Need z_0 resolution <0.6 mm
 - Liquid Argon based electromagnetic calorimeter has coarser granularity
 - New inner tracker (ITk) has poor z resolution in the forward region
 - \circ Push to higher luminosity ightarrow timing becomes more and more important
 - Using timing information easier to reconstruct vertices
- A High Granularity Timing Detector (HGTD) is proposed in front of the Liquid Argon end-cap calorimeters for pile-up mitigation
 - Improve performance in the forward region by combining
 - HGTD high-precision time measurement
 - ITk position information (vertices longitudinal impact parameter)

HGTD detector

- Detector quite constrained by the space available and the harsh radiation environment
- HGTD designed for operation with $<\mu>$ = 200 and 4000 fb⁻¹
 - Recover electron ID, track & jet reconstruction and b-tagging
- Two instrumented double-sided layers mounted in two cooling/support disks per end-cap
- LGAD technology chosen
 - It provides an internal gain (good time resolution) while providing a good S/N ratio (good efficiency)
 - Sensors will be operated at -30 °C to mitigate impact of irradiation
 - Connected to dedicated front-end electronics ASICs (ALTIROC) through flip-chip bump bonding process (hybridization)

Requirements:

- Detector can withstand the lifetime of the HL-LHC running (3 ring layout)
 - Maximum n_{eq} fluences: $2.5 \times 10^{15} n_{eq}/cm^2$
 - Total Ionising Dose (TID): 2 MGy at the end of HL-LHC (4000 fb^{-1})
- Average time resolution: 35 ps (start), 70 ps (end) per hit / 30 ps (start), 50 ps (end) per track
- Collected charge per hit >4 fC
- Hit efficiencies of 97% (95%) at the start (end) of their lifetime

FLEX tail

Sensor activities in HGTD

Charge_{MPV} [fC]

- LGAD sensors have been extensively studied during the R&D phase of the HGTD project
- Investigations towards radiation hard LGADs for HGTD
 - Explored use of different designs, doping materials and C-enriched substrates
 - B+C sensors have larger charge collection than B and Ga at the same bias voltage
 - C helps to diminish the effect of gain reduction with irradiation
 - Studies of performances and radiation hardness
 - Acceptor removal coefficient targeting 1-2×10⁻¹⁶ cm²
 - $V_{gl} = V_{gl0} \times \exp(-c \times \phi_{ed})$
 - Optimization carbon enrichment dose and diffusion techniques
- Tested sensors with (B, B+C GL) from several vendors (this talk)
 - Simultaneously show good enough CC/timing/efficiency in the test beam after $2.5 \times 10^{15} n_{eq}/cm^2$
- Ongoing studies on the performance of ALTIROC2+full sensor
 - We aim to irradiate full size modules

LGAD End-of-Lifetime

LGAD end-of-lifetime studies [paper under review]

- Major concern for operation stability of LGADs after irradiation
 - After irradiation LGAD timing performance degrades due to loss of gain \rightarrow increase of bias voltage to recover
 - Some devices showed irreversible breakdown while operating in these conditions (~100V lower than operated at lab)
 - Observed in most vendors at different test beam facilities
 - Determine the safe operating voltage that these sensors can withstand
 - Common effort ATLAS/CMS/RD50 Collaborations to find mitigating measures
 - Exposed large number of sensors to charged-particle beams
 - Single Event Burnout (SEB): usually triggered by single particle. Large energy deposits: electric field collapse in present of high concentration of free carriers. Electric field (V_{bias}/thickness) is the key parameter determining the fatality
 - Destructive events begin to occur when the average electric field in the sensor becomes larger than $12 V/\mu m$
 - Most promising solution is Carbon enrichment, which would reduce the required voltage and therefore extend the lifetime

ATLAS HGTD Preliminary

LGAD End-of-Lifetime tests

- Test beam @DESY and @SPS in 2021
 - Using EUDET-type telescope + thermal box + TLU
 - LGAD end-of-lifetime studies (cold measurements at -30 °C)
 - Irradiated LGADs at different fluences from different vendors
 - Study the limitations of the operational voltage at each fluence
 - Use different geometries (change in rate): single pad, 2×2, 5×5
 - Goals:
 - Gain more information on single event burnout (SEB) mechanism
 - Determine safe bias voltages to avoid SEB
 - Check candidate sensors are safe from SEB at biases meeting HGTD specifications
 - Procedure:
 - Expose irradiated sensors to beam, keeping track of rate, at 8h per bias point
 - Increase bias until SEBs occur, check if above required voltage for 4fC collected charge
- Both beam test campaigns confirmed SEB issue occurs \rightarrow safe zone <11V/µm
 - 74 sensors tested, 55 survived to voltages expected to meet HGTD specs
 - \odot SEB probability ~10^-6 to ~10^-5 depending on irradiation, for ~13V/µm

Front

Beam test campaigns

18th "Trento" Workshop on Advanced Silicon Radiation Detectors 28th February 2023

LGAD prototypes for HGTD

- Tested C-enriched prototypes from 3 vendors (FBK, USTC-IME and IHEP-IME)
- LGAD (CNM-0) used as a time reference in some tests (CERN-SPS) as well as a SiPM device (DESY)
- Sensors were exposed to fluences up to 2.5×10¹⁵ n_{eq}/cm² at the TRIGA reactor in Ljubljana, Slovenia with fast neutrons
- Bias voltages were kept lower than the SEB voltage

Device name	Vendor	Sensor ID	Implant	Irradiation type	Fluence [n _{eq} /cm ²]	Tested at
CNM-0	CNM	W9LGA35	boron	unirradiated	_	DESY/CERN
FBK-1.5	FBK	UFSD3.2 W19	boron + carbon	neutrons	1.5×10^{15}	DESY/CERN
FBK-2.5	FBK	UFSD3.2 W19	boron + carbon	neutrons	2.5×10^{15}	DESY/CERN
USTC-1.5	USTC-IME	v2.1 W17	boron + carbon	neutrons	1.5×10^{15}	DESY
USTC-2.5	USTC-IME	v2.1 W17	boron + carbon	neutrons	2.5×10^{15}	DESY
IHEP-1.5	IHEP-IME	v2 W7 Q2	boron + carbon	neutrons	1.5×10^{15}	DESY/CERN
IHEP-2.5	IHEP-IME	v2 W7 Q2	boron + carbon	neutrons	2.5×10^{15}	CERN

Device name	V _{gl0} [V]	Difussion	c [cm ²]
FBK-1.5/2.5	50	Н	1.73×10^{-16}
USTC-1.5/2.5	27	L	1.23×10^{-16}
IHEP-1.5/2.5	25	CHBL	1.14×10^{-16}

Collected charge

- Distribution of charge in the ROI fitted with a Landau-Gaussian convoluted function
- Collected charge:
 - Defined as the most probable value (MPV) from fit
 - Above the minimum required charge of 4 fC needed for a good timing measurement with the HGTD

18th "Trento" Workshop on Advanced Silicon Radiation Detectors 28th February 2023

Hit efficiency

Hit Efficiency = $\frac{\text{Reconstructed tracks with } q > Q_{cut}}{\text{Total reconstructed tracks}}$

- Q_{cut} is set to 2 fC, the minimum achievable threshold of the future ALTIROC chip
- Achieved the efficiency of 95% required for good operation of the future HGTD after irradiation

ATLAS HGTD Preliminary Test Beam Efficiency (%) IHEP-1.5, 400V

• @DES

X [mm]

-0.: -0.4

-0.8

Time resolution

- To extract the LGADs' time resolutions, the distributions of the difference between the TOA of the LGADs and that of the time reference device were fitted with a Gaussian function, each of them giving a width σ_{ii}
- $\sigma_{ij}^2 + \sigma_{ik}^2 \sigma_{jk}^2$ Having 3 devices, the resolution of each one is calculated as $\sigma_i = \sqrt{1 - \frac{1}{2}}$
- Time resolution of time reference devices are already subtracted (σ_{SiPM} =62.6 ps, σ_{CNM-0} =54.8 ps)

Summary and outlook

- The High Granularity Timing Detector requires high-performance and radiation-resistant sensors
 - Choose promising technologies based on results from several beam test campaigns
 - LGADs irradiated to simulate their end-of-life state and studied with charged-particle beams at DESY and CERN in 2021 and 2022
- Carbon-enriched LGADs from three vendors (FBK, IHEP-IME and USTC-IME) have been studied both in terms
 of radiation resistance and performance
 - \circ Although irradiated at fluences of 1.5 2.5 × 10¹⁵ n_{eq}/cm², the LGADs were operated at voltages below 550V
 - Under these conditions, LGADs achieved the objectives of:
 - A collected charge of more than 4 fC while guaranteeing an optimum time resolution below 70 ps
 - An efficiency larger than 95% uniformly over the sensor's surface is obtained with a charge threshold of 2 fC
 - 2 papers submitted for publication are under review
- These results confirm the feasibility of an LGAD-based timing detector for HL-LHC
- Future plans: Looking forward the new C-enriched production from CNM to be tested soon this year

THANK YOU FOR YOUR ATTENTION

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754510