LGADs for Astroparticle Physics Experiments in Space

<u>A. Bisht</u>, G. Borghi, M. Boscardin, L. Cavazzini, M. Centis Vignali, F. Ficorella, O. Hammad Ali, G. Paternoster

18th Trento Workshop on Advanced Silicon Radiation Detectors

Current and future Cosmic Rays Space experiments

Objective: Higher energies and improved sensitivities

ashish.bisht@unitn.it

LGADs for Space Applications

March 1, 2023

1/15

Time resolving tracking in space experiments

- Identification of back-scattered hits from calorimeters
- Ghost hits in "Si-MicroStrip" detectors
- Time-of-flight (ToF) measurement
- Improved e/p identification
- $\frac{\delta M}{M} = \frac{\delta p}{p} \bigoplus \gamma^2 \left(\frac{\delta \beta}{\beta}\right)$

em cascade

d and anti-d
 ³He/⁴He

[Matteo Duranti et al. Instruments 5.2 (2021)]

Low Gain Avalanche Diodes (LGAD)

- Silicon detectors with charge multiplication
- Gain layer provides high-field region
- Radiation hard (10¹⁵ neq/cm²)
- Low Noise (low shot noise)

Improved SNR: 5-10 times better than current detectors

Good timing resolution O(10 ps)

Space experiment requirements

- ▶ Large area to cover $\rightarrow O(m^2)$
- ► Low Earth Orbit Experiments →*Radiation is not an issue*
- Rate is not as high as in HEP
- ► Power constraint → Reduce the number of channels
- ► Timing (~ 50-100 ps) is desired

- "Typical" Silicon sensor
 - \rightarrow Strips (100 μm pitch)
 - ightarrow 60-100 cm long
 - $ightarrow \sim 1 \ {
 m cm}^2$

Space experiment requirements

- ▶ Large area to cover $\rightarrow O(m^2)$
- ► Low Earth Orbit Experiments →*Radiation is not an issue*
- Rate is not as high as in HEP
- ► Power constraint → Reduce the number of channels
- ► Timing (~ 50-100 ps) is desired

► "Typical" Silicon sensor → Strips (100 μm pitch) → 60-100 cm long → ~ 1 cm²

Scaling LGAD channel size to 1 cm²

Capacitance? Time resolution?

LGADs for Space Applications

Thickness and Gain Optimization

- LTspice simulation
- Sensor capacitance
- No Landau fluctuations (uniform charge deposition)
- Saturated velocities
- $\blacktriangleright \quad \mathsf{Total Noise} = \mathsf{Amplifier} \oplus \mathsf{Sensor}$

[M. Centis Vignali et al. VCI (2022)]

Thickness and Gain Optimization

[M. Centis Vignali et al. VCI (2022)]

LGAD thickness > 100 μm and gain \approx 100

ashish.bisht@unitn.it

LGADs for Space Applications

6/15

Space LGADs

Production of new LGAD sensors under INFN project

- Optimized for large areas
- Pad and strip sensors
- Strips: 100 μm, 150 μm, 200 μm pitch
- Active thickness: 50 μ m, 100 μ m, 150 μ m thick
- Gain implant dose and energy optimized for high gain using TCAD
- Signal propagation

Gain: using IR LED

value of gain highly depends on the dose and energy of the implant
 less steep curves for better operating voltage

Experimental setup: Transient Current Technique (TCT)

- ► Infra-Red (1060 nm) and Red (600 nm) pulsed Laser → 10-15 µm spot
- ► X/Y translation stage (0.8 μm precision) → precise inter-pixel scan and
 - DUT maps
 - Beam monitor

16-channel Fermi Board (2 stage Amplification)

Samples investigated

Pad active area:

- A (6.25 mm²)
- B (25 mm²)
- C (100 mm²)

Pad types:

- Type-0: Metal frame
- **Type-1**: Fully Metallized, Contacts at the edge of the active area
- **Type-2**: Fully Metallized, Contacts covers all active area

Type-0

Type-1

Type-2

Gain curves follow similar trend as measured with the IR LED

Gain: using TCT setup

$$Gain = \frac{Charge_{LGAD}}{Charge_{PIN}}$$

- Laser Intensity: 1 MIP
- Low bias voltage: gain value is similar
 - High bias voltage: gain value has a spread of about 20%
- One device show low gain values compared to others

Jitter Measurements

$$\sigma_{jitter} = rac{Noise (N)}{Slew rate (dV/dt)}$$

- Measurement (no averaging in Oscilloscope) \rightarrow Noise estimation
- Measurement (256 averages in Oscilloscope) \rightarrow Slew rate estimation

First Jitter measurements of 1 cm² LGADs

 $\sigma_{\it Jitter}~\sim$ 44 ps for an LGAD 1 cm 2

Summary

- Standard LGADs batch dedicated to the space experiments.
- Increase active thickness to reduce the capacitance
- Increase the gain to about 100 for reduced Jitter values

$$ightarrow \sigma_{Jitter} \sim$$
 44 ps $ightarrow$ 100 mm² active area

▶ $\sigma_{Jitter} \sim 20 \text{ ps} \rightarrow 6 \text{ mm}^2$ active area.

Current Status and Outlook

- Timing measurements with beta source
- Possible beam test

Summary

- Standard LGADs batch dedicated to the space experiments.
- Increase active thickness to reduce the capacitance
- Increase the gain to about 100 for reduced Jitter values

$$ightarrow \sigma_{Jitter} \sim$$
 44 ps $ightarrow$ 100 mm² active area

> $\sigma_{Jitter} \sim 20 \text{ ps} \rightarrow 6 \text{ mm}^2$ active area.

Current Status and Outlook

- Timing measurements with beta source
- Possible beam test

Thank you for your attention

