New Results from Timepix4 at the SPS

Efrén Rodríguez Rodríguez (IGFAE)

on behalf of the Timepix4 Telescope group

efren.rodriguez.rodriguez@cern.ch

Timepix4 Telescope

- Success Timepix3 based **beam telescope** -> **upgrade** using Timepix4 ٠
- Main improvement (and challenge): **better track time resolution**
 - Timepix3 telescope achieved $\sim O(300)$ ps after long and careful tuning •
- the LHCb VELO Timepix3 Telescope' Timepix4 based beam telescope will be used for characterization of novel sensors (in view of LHC upgrade programmes)
- Timepix4 based telescope was . constructed:

Main aim was to see first tracks in Timepix4 in July 2022 and get closer to a final telescope in October 2022

Comparison of the beam time needed by the various telescope options to reach a given relative uncertainty on the measurement

2

K. Heijhoff et al., 'Timing performance of

Timepix3 -> Timepix4

- The <u>temporal resolution [1]</u> from Timepix3 yielded an extremely clean clustering and <u>track</u> <u>reconstruction [2]</u>.
- The <u>Timepix4 [3]</u> has 8 times finer TDC and can lead to a real-life 4D tracking device.
 - Can we achieve 20 ps on a track?
- The TPX4 also has a much higher data rate allowing even faster <u>Characterisation of devices [4]</u> the future 4D detectors need a lot more data!
- <u>Timepix4 based tracker was constructed for several</u> testbeam campaigns: October (2021), July (2022), October (2022)

umestamp binning, CERN Detector Seminar 11th February 2

Timepix4 ASIC

https://indico.cern.ch/event/1121147 X. Llopart et al 2022 JINST 17 C01044

			Timepix3 (2013)	Timepix4 (2019)	
Technology			130nm – 8 metal	65nm – 10 metal	
Pixel Size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3.5x	,
Sensitive area			1.98 cm ²	6.94 cm ²	
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA		
		Event Packet	48-bit	64-bit 33%	5
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s	
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel	5
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)	
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm²/s 6x	G
TOT energy resolution			< 2KeV	< 1Kev 2x	
Time resolution			1.56ns	195.3125ps 8x	Ċ
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps))
Target global minimum threshold			<500 e ⁻	<500 e	

Timepix4v2 with 100 μ m sensor n-on-p in the testbeam setup (July 2022)

Limitations Timepix4v1 and outlook Timepix4v2

Timepix4v1: **problem** with the **VCO** (voltage controller oscillator) -> the frequency is too high

- Leads to **stability problems** in the chip
- Parameter variations over the chip remain
- Issue expected fixed in Timepix4v2

For Timepix4v2 telescope

- New supply of SPIDR4 -> Increased number of planes
- Test stability and full telescope configuration
- Timing and spatial resolution studies:
 - Angle, bias, threshold and pre-amp scans

Testbeam facilities

- H8 beamline at SPS / CERN
- 180 GeV/c mixed beam
- Mostly pions (K, p)

Assemblies and chipboards

- 10 assemlies :
 - Telescope: 4 x 100 μm (timing) and 4 x 300 μm (spatial) All sensors are n-on-p
 - 1 x 50 μm as DUT
 - 1x 300 μm p-on-n (backup sensor)
- All chips/PCBs attached to 3D printed titanium cooling block
- Glycol used to cool chips to about room temperature ready to go colder

Cooling and interface

Telescope configuration

8 tracking layers with Timepix4v2 ASICs with sensors from Advacam:

- 4 with 300 μm n-on-p sensors, at 9° pitch/yaw angle for better spatial resolution
- 4 with 100 μm n-on-p sensors, at 0° angle for better time resolution

XUNTA DE GALICIA

- 3 Scintillators + constant fraction discriminators & MCP (MicroChanel Plate) + PicoTDC as reference timing
- 50 μm n-on-p sensor as DUT (Device Under Test), in motor stage for angle studies

DUT assembly with motion stage

Read out by 9 SPIDR4 systems: 10 Gbit ethernet via fibre

Timepix4 assemblies in gas-tight and light-tight enclosure: Allows operation at low(er) temperatures (better time resolution)

Schematic view

MINISTERIO DE CIENCIA E INNOVACIÓN

Last testbeam campaign events

Initially 8 working planes + unstable 50 µm DUT

Power supply spike left us with 7 planes + DUT:

• Data taking with this configuration for temporal and spatial resolution on all sensors

Replacement of unstable 100 μ m with a 300 p-on-n

- Replacement DUT for a telescope plane for angle studies, 50 µm not included in telescope due to stability issues:
 - Final running configuration: 6 planes telescope + DUT
 - DUT was swapped with both kind of sensors for angle studies

Lost of data from plane 1 due to broken hard drive

• Data available for most of the campaign: 5 planes telescope + DUT

This is still an improvement from previous testbeams and getting closer to the full working telescope!

Data Analysis and Results

- Online monitoring to check for performance
- ToT and hitmap look "as expected"
- Offline and online analysis using the LHCb's Kepler framework.

Spatial Residuals

- Unbiased residuals, measured extrapolating tracks made with the rest of the detectors for each run
- 6 planes working for this examples: 3 x 300 µm & 3 x 100 µm
- The pointing resolution is not subtracted from these values, hence the huge differences

XUNTA

USC

Residual dominated by sensor pitch of 0º (not by telescope: 3 thick sensors used in track reconstruction)

300 µm sensor

Residual is mix of sensor and Telescope (only the remaining 2 thick sensors used in track reconstruction)

12

100

x_{clus}- x_{track}[µm]

N10-8192,N10-8193 N34-8192,N34-8193 ×10³ Entries 100 25000 90 80 20000 70 60 15000 50 40 10000 30 5000 20 10 -100 -50 0 50 100 -50 -100 0 50 x_{clus.}- x_{track}[µm]

100 µm sensor

Temporal measurement

- Base clock of 40 MHz
- Hit starts 640 MHz ring oscillator
 - 1.56 ns bins
 - Count # clock cycles (like in Tpx3)
 - Oscillator shared by 8 pixels in superpixel
- Oscillator is stopped by first rising edge of 40 MHz clock
- In addition the internal state of ring oscillator is captured \rightarrow 195 ps bins

Time measurements: TPX4v1 vs TPX4v2

- TPX4v1 oscillator ~25% too fast -> 21 FToA bins instead of 16
- TPX4v2 oscillators run at (almost) the design frequency -> Issue fixed in Timepix4v2: 16 fToA bins, as expected

Actually 17 bins, as first and last bin are half the size

Correction factors are still necessary:

•Small VCO frequency deviations can still worsen the time resolution because of accumulative errors

•Ultrafine time bins not equalized yet

Time resolution

- Time reference = Scintillator : initial value for time resolution (example 100 μm perpendicular plane)
 - Where $\Delta t = t_{scintillator} t_{hit}$

 Projecting the values to the Y axis we can see the time resolution distribution with a raw resolution before any corrections of ~O(3) ns

Temporal corrections Timepix4v1

- Timewalk correction applied using Time-to-Threshold (TtT) measurements
 - Track based timewalk correction for tilted sensors
- Delay offsets per-pixel corrected
- Planned for final telescope: per-VCO bin delay correction

TtT [ns]

10

16

(normalised

Entries

0.2 0.1

100 µm n-on-p perpendicular

Corrected time resolution (single plane Timepix4v1)

- An example of the corrections:
 - 100 μm n-on-p @ 50 V

USC

Corrections:	σ _t [ps]
None	789
Timewalk	450
Timewalk + delay offset	439

- Final goal: find the best operating condition for all planes individually
- Due to lack of time not done for Timepix4v1
- Best track resolution, for 4 plane TPX4v1 telescope, at nominal threshold and highest bias voltage: **340 ps**

Time resolution variations Timepix4v1

- Variation of time resolution observed over the matrix
 - From 250 ps to 450 ps over half the chip ٠
- Most likely related to **VCO issue** from Timepix4v1 ٠
 - Investigation started, and planned to look at the ٠ response of Timepix4v2
- Good hope that **Timepix4v2** will **not have** (or drastically reduced) this variation

XUNTA DE GALICIA

Time resolution Timepix4v1

K. Akiba et al., 'Reconstruction of charged tracks with Timepix4 ASICs', Journal of Instrumentation, vol. 18, no. 02, p. P02011, Feb. 2023.

Left (right): time resolution of the four telescope planes from 2021 testbeam as a function of the bias voltage (threshold)

Data and analysis plans with 2022 data

Several scans have been performed

- As DUT
 - Scans over: bias, threshold, Vpreamp and agle
 - 300 µm p-on-n
 - 50 μm n-on-p
 - 100 μm n-on-p
 - 2D scan over bias and angle for a 100 μm n-on-p
- As telescope planes
 - Scans over: bias, threshold and Vpreamp
 - 100 μm n-on-p
 - 300 μm n-on-p

Analysis plans

- Time resolution studies on 50 μm , 100 μm and 300 μm
- Spatial resolution studies on 300 μm
- Telescope configuration for resolution improvement
- Improve time resolution with PicoTDC data from scintillators and MCP

Problems encountered so far

- Shift between planes of 25 ns (equivalent to 40 MHz timepix4 clock)
- Delay offsets per pixel (study ongoing on matrix delay structure)
 - Effect visible after timewalk correction (possible due to delay in matrix edge)

Summary for Timepix4 telescope

Results from Timepix4V1 sensor scans published

Recently performed a beam test with 8 Timepix4v2 sensor planes + DUT

- ٠ Stable system for most sensors
- At first glance the data looks good and makes sense ٠
- First tracks with full Timepix4v2 telescope reconstructed ٠
- ٠ Very preliminary spatial and time resolution numbers

Analysis ongoing, and planning on:

- Improve the time resolution of reference signal: MCPs + PicoTDC < 20 ps ? ٠
- ٠ Studies on different telescope configurations for resolution optimization

Getting ready for a full, and stable, 8 planes telescope this year

Nikhef: Robbert Geertsema, Kazu Akiba, Kevin Heijhoff, Martin van Beuzekom, Daan Oppenhuis

CERN: Victor Coco, Raphael Dumps, Wiktor Byczynski

IGFAE: Efrén Rodríguez Rodríguez, Edgar Lemos Cid

Dortmund university: Elena Dall'Occo, David Rolf

Manchester University/CERN: Tim Evans

Oxford University: Tommaso Pajero, Rui Gao, Fernanda Goncalves Abrantes

And of course people from the Timepix4 and SPIDR4 design teams in general and especially: Xavi, Vladimir, Bas, Vincent, Henk, Martin F.

Test beam crew:

dortmund

technische universität

Thank you for your attention

Questions?

Backup

Tpx3/Tpx4

			Timepix3 (2013)	Timepix4 (2019)		
Technology			130nm – 8 metal	65nm – 10 metal		
Pixel Size			55 x 55 μm	55 x 55 μm		
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448		
Sensitive area			1.98 cm ²	6.94 cm ²		
	Data driven (Tracking)	Mode	TOT and TOA			
les		Event Packet	48-bit	64-bit		
Vod		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s		
rt 7		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel		
ope	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)		
Rea		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)		
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm²/s		
TOT energy resolution			< 2KeV	< 1Kev		
TOA binning resolution			1.56ns	195ps		
TOA dynamic range			409.6 µs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)		
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)		
Target global minimum threshold			<500 e⁻	<500 e⁻		

MINISTERIO DE CIENCIA E INNOVACIÓN

VEX

Timepix4 pixel architecture

MINISTERIO DE CIENCIA E INNOVACIÓN

Timepix4 versions

MINISTERIO DE CIENCIA E INNOVACIÓN

Time resolution of analog front-end, lab measurement (Timepix4v1)

- Timepix4 suited for electron and hole collecting sensors
- Optimized for electron-collecting mode

- Front-end time resolution depends on settings
- (Somewhat) better time resolution can be achieved at the cost of power

Time resolution vs bias voltage (Timepix4v1)

- Current configuration does not allow to change the bias for each plane separately
- Currently only a bias scan:
 - Thick (300 µm sensor) tilted
 - Thin (100 µm sensor) perpendicular
 - Best time resolution found at highest bias voltages
- Bigger contributions might obscure further improvements for the thin sensors

Time drift between planes Timepix4v1

Scintillator hit timestamped by one plane, hits from other plane

Observed time drift of ns between different planes; change at millisecond scale

Seems to be caused by clock jumps, and the response of the SPIDR4 PLLs

Still under investigation, but clearly need to improve clock stability & distribution

Timepix4v2: fToA and ufToA distributions

MINISTERIO DE CIENCIA E INNOVACIÓN

GFAE

USC

XUNTA

- Data from top and bottom row . superpixels
- Mean fToA bins size close to . expectation
- Small standard deviation

18/11/2021

- Difference between top and distributions is small
- But nonetheless corrections will make a difference for the time resolution

Trento Workshop 2023 – Efrén Rodríguez Rodríguez

hef

Nik

Why corrections are required

• Time of arrival is calculated with:

$$t_{\rm hit} = \left({\rm cToA} - \frac{\alpha}{16} \,{\rm fToA} - \frac{\alpha}{128} \,{\rm ufToA}\right) 25 \,{\rm ns} + \Delta t_{\rm pixel}$$

- Where α is a per pixel correction factor
- And Δt_{pixel} is time offset of pixel, which is assumed to be calibrated out
- Chip-wide, per half and per superpixel corrections are worth the effort
- Per bin corrections will only give only ~6 % improvement
 - While the number of correction parameters increases by a factor 8, 64, or even 1024

Track based timewalk correction

For detailed information see K. Heijhoff et al., 2020 JINST 15 P09035

Alignment results

