

First survey of centimeter-scale AC-LGAD strip sensors with a 120 GeV proton beam

Christopher Madrid TREDI 2023: 18th Trento Workshop on Advanced Silicon Radiation Detectors March 1st, 2023

Fermilab U.S. DEPARTMENT OF ENERGY Office of Science

Future trackers need timing

- 4D-trackers will play a key role at future machines

 - Enhanced capabilities: PID and LLP reconstruction
- HL-LHC timing detectors are a major step towards 4D trackers
 - LGADs with 1.3x1.3 mm² pixels -
 - Resolutions of \sim 375 µm and 30 ps

Measurement	Technical requirement			
Tracking for e+e-	Granularity: 25x50 µm ² pixels			
	Resolutions of 5 µm and <10 ps			
Tracking for μ+μ-	Granularity: 25x25 µm ² pixels			
	Resolutions of 5 µm and <30 ps			
Tracking for 100 TeV pp	Radiation tolerant up to 8x10 ¹⁷ n/cm ²			
	Resolutions of 5 µm and <10 ps			
Technical requirements for future trackers:				

from <u>DOE's HEP BRN</u> and <u>Snowmass 4D tracker whitepaper</u>

- Reduce backgrounds, track reconstruction, triggering will need precision timing information in addition to precision position

- All of these pose unique challenges, and opportunities to detector and electronics design, and event reconstruction

AC-coupled LGADs

- Decreasing LGAD channel size from millimeter to the micron scale produces sensors with poor fill factor
 - Gain layer termination requires \sim 50 μ m interchannel gap size
- AC-LGADs solve this issue
 - 100% fill factor, and fast timing information at a per-pi
 - Electrons collect at the resistive n+ and then slowly fle contact at the edge
 - Simultaneously improve position resolution via signal sha
- Signal sharing allows for improved position resolution
 - Interpolating between channels

Hit efficiency across surface of CMS 5x5 FBK LGAD

High resolution AC-LGAD strips

- Excellent performance from several BNL 100 to 200 μm strip prototypes
 - Well-tuned signal sharing \rightarrow uniform 2-strip efficiency

- Promising 4D sensors: 26-30 ps timing and 5-10 µm resolution
- Where do we go from here?

Large-area AC-LGAD strips

- Alternate direction: maintain performance with much sparser readout
 - High precision (time & space) with coarser readout & few channels
- Promising approach at the Electron Ion Collider for the ePIC detector's TOF layer
 - Particle ID via time of flight
- Considering centimeter length sensors with 500 µm pitch
 - Various 4D tracker needs

	Area (m^2)	Time resolution	Spatial resolution	Mate
Barrel Timing Tracking Layer	11	$30 \mathrm{\ ps}$	$30 \ \mu m \ { m in} \ r \cdot \phi$	
Endcap Timing Tracking Layers	1.2+2.2	$25 \mathrm{\ ps}$	$30 \ \mu m$ in x and y	(
B0 Tracker	0.07	$30 \mathrm{~ps}$	$500/\sqrt{12} \ \mu m$	
Roman Pots	0.14	$30 \mathrm{\ ps}$	$500/\sqrt{12}~\mu m$	no
Off-Momentum Detectors	0.08	$30 \mathrm{\ ps}$	$500/\sqrt{12} \ \mu m$	no

Testing large-area AC-LGAD sensors

- All measurements conducted at Fermilab Test Beam Facility (FTBF)
 - Results based on two separate test beam campaigns
 - Used 120 GeV proton beam from main injector
- First beam test in March 2022 focusing on first batch of long strip BNL sensors
 - Paper detailing 2022 beam test results (<u>arxiv.2211.09698</u>)
- Second beam test concluded in January 2023 on second batch of long strip BNL sensors and HPK pixels with thickness variation

Fermilab 4D-trackers test beam infrastructure

- Permanent setup in FNAL test beam facility (FTBF)
 - Movable: slide in and out of beamline as needed, parasitic use of beam
 - Environmental controls: sensor temperature (-25 C to 20 C), and humidity, monitoring
 - Time reference with ~ 10 ps resolution (MCP)
 - DAQ: high bandwidth, high ADC resolution 8-channel scope
 - Record 20k events during 4 s spill,
 - Tracker with ~5 µm resolution
- Developed readout boards for the characterization of LGADs
 - Without complex ASIC and DAQ

March 1st, 2023

C. Madrid | TREDI 2023

of beam d humidity, monitoring

Cold box

(5 LGAD slots)

LV, motor stage

control, thermal

ΗV

monitoring

High BW

Scope

Multiplexer

8-channel oscilloscope 2 GHz, 10 GSa/s

- Survey conducted on ~30 sensors
 - Strips with 500 μ m pitch and 5, 10, and 25 mm long channels
 - **Pixels** with 500x500 μm² channel size
- Focused on geometry optimization and tradeoffs with larger channels

BNL 500 µm x 25 mm

Fermilab

Checking gain uniformity

- Initial sensors had localized gain featured
 - BNL adapted their gain implantation procedure
- Greatly improved gain uniformity with second batch

Propagation delays across surface • Large electrodes \rightarrow distant signals arrival with delays O(100 ps) O(100 ps) delays

- Easily correct for position dependent delays:
 - Trivial within collider tracking system
 - OR, with dual-end readout: self-correcting!

Correct with alternating dual-end readout

$\Delta t_{L-R} \rightarrow$ reconstruct longitudinal position with mm precision

4D tracking performance: BNL 1cm strips

- Sensor provides 100% efficiency but only ~80% at least two strip efficiency Measure mostly uniform 20 μm position resolution
- Quantified different time resolutions based on how the time delayed is accounted
 - Using track information to account for the delay can achieve ~40 ps time resolution

Sensor thickness variations

How do you get better time resolution?

- Thinner sensors to decrease Landau contribution

Results for HPK sensors that are 20, 30, and 50 µm thick

- Almost fully metallized
- Optimized for timing performance
- Do not have 2 pixel efficiency outside of the small non-metallized gaps
 - Can not use signal sharing for position reconstruction
- Faster risetime

Sensor thickness variations

- Enough signal sharing to cover gap fully
- Great timing performance
- Observe uniform time resolution across full sensor area

HPK_20um_500x500um_2x2pad_E600_FNAL, 105V Preliminary Single-channel (w/o TrackerCorrection) Single-channel (w/ TrackerCorrection) Multi-channel (w/ TrackerCorrection)

- -4.2 -4 -3.8 -3.6 -3.4 -3.2 Track y position [mm]
- ~25 ps for 30 µm thick sensor
- ~20 ps for 20 µm thick sensor

ensor ensor

Summary

- LGADs
 - 100% fill factor
 - spatial resolution ~20-30x smaller than pitch
- 20 microns & 40 picoseconds simultaneously in best regions - Targeting EIC's ePIC detector and close to meeting design goals
- HPK 20 and 30 μm thick sensors reach below 25 ps time resolution - Uniform and excellent time resolution

AC-LGADs provide excellent 4D performance, with timing resolution comparable to

Large, coarse pitch sensors show promising performance, obtaining resolutions of

 15
 March 1st, 2023
 C. Madrid
 TREDI 2023

