

ARCADIA fully-depleted monolithic active pixel sensors optimised for sub-nano second timing

<u>Chiara Ferrero</u>, Greta Andrini, Thomas Corradino, Gian-Franco Dalla Betta, Coralie Neubüser, Lucio Pancheri on behalf of the ARCADIA collaboration

18th Trento Workshop on Advanced Silicon Radiation Detectors

ARCADIA monolithic sensors

ARCADIA (Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays) R&D project

- Fully depleted Monolithic Active Pixel Sensor (FD-MAPS) profit from a low material budget and cost
- Charge collection by drift: fast and uniform response over all the pixel matrix
- Innovative sensor design based on a modified 110 nm CMOS process with backside bias to improve charge collection efficiency and timing

ARCADIA pad diode monolithic sensor

TCAD single pixel simulation domain: $(50x50x50) \mu m^3$

Punch-through current and power density @ 10 mW/cm²

Pixel pitch [um]	Thickness [um]	Vn [V]	Vpt [V]	Vpd @ 10 mW/cm ² [V]
50	50	3.3	34.5	41.7
50	35	3.3	20.8	26.2
50	25	3.3	12.4	16.3

Power density dissipated by punch-through current 30

10

20

30

otal current [A]

10⁻⁵

10⁻⁶

10-7

10-8

10-

10⁻¹⁰

10-11

10-12

10⁻¹³

10-14

10⁻¹⁵

10-16

10⁻¹⁷

0

10 mW/cm²

60 70 |V_Pbot| [V]

SIMULATION TOOLS

TCAD

- Numerical simulation tool for sensor modeling
- Describes carriers motion and electromagnetic fields
- Very demanding on computing time

ALLPIX²

- Monte Carlo simulations
- High statistics
- Geant4 for energy deposition
- Telescope and complex detector geometries

Allpix²: a modular simulation framework

- allpix squared
- Modular, Monte Carlo based simulation framework for detectors built in CMOS technologies
- Possibility to combine TCAD-simulated electric fields with a Geant4 simulation of the particle interaction with matter, taking into account the stochastic nature of the initial energy deposition
- Static electric field

TCAD 3x3 simulation domain

TCAD simulated electric field

Doping

Electric Field

Electrostatic Potential

-SYNOPSYS®

chiara.ferrero@polito.it - ARCADIA FD-MAPS

Electric Field - single pixel domain 100 μ m pitch

Induced signals from Ramo-Shockley theorem

Weighting Potential - 3x3 simulation domain 50 / 100 / 150 µm pitch

Weighting Potential investigation

vertical line in the center of the 3x3 simulation domain 50 / 100 / 150 µm pitch

Weighting Potential investigation on the transverse coordinate for 50 / 100 / 150 μ m pitch

Weighting Potential investigation on the transverse coordinate for 50 / 100 / 150 μ m pitch

Time resolution evaluation: CFD method on 10k events

Normalized collected charge

Time resolution evaluation 10k events performance comparison **50 / 150 µm pixel pitch**

Time resolution with CFD method

Conclusions and next steps

- The timing performances of FD-MAPS in 110 nm CMOS process with pixel pitch from 50 μ m to 200 μ m and 25 / 35 / 50 μ m thickness have been simulated
- For 25 μ m thickness and below, sensors with pixel pitch \ge 100 μ m are suitable for optimal timing resolution
- Integrated electronics with simulated electronics jitter below 100 ps has been designed and fabricated, test starting in March
- Work in progress: simulation of timing resolution using TCAD and Allpix² frameworks on monolithic sensors with additional gain layer

BACKUP SLIDES

Allpix² simulation chain Construction of the Geant4 **Electric field** geometry Transfer to Charge Digitization Propagation readout deposition \rightarrow \rightarrow with Geant4 electronics Write Monitoring simulation

results to file

histograms

Simulation of the induced signals from Ramo-Shockley theorem using the weighting potential

The weighting field of an electrode can therefore also be calculated by leaving all electrodes at the bias voltages and adding the voltage V_0 to the electrode in question and then taking the difference of the fields

Riegler, W. An application of extensions of the Ramo-Shockley theorem to signals in silicon sensors, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, Oct 2019

- Two simulations of the sensor at different voltages at the readout electrode (V₀ and V₀ + Δ V) with V₀ = 3.3V and Δ V = 0.01V Subtract the two electrostatic potentials and normalize the difference $\frac{(3.31 - 3.3)V}{0.01V}$ = 1 at the electrode of interest
- For the weighting field, same procedure but with the two electric fields (x, y, z directions)