
https://www.desy.de/



Silicon Detectors II
Particle Detection & Position Resolution

Simon Spannagel
EURIZON Detector School

18 July 2023    



18/07/2023S. Spannagel - EURIZON Detector School - Silicon Detectors II3

Particle Detection with Semiconductor Detectors
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Recap:
Particle Interaction, e/h Pair Generation
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Particle Detection with Silicon Detectors
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Energy Deposition – Energy Loss
● (heavy) charged particles:

Mean energy loss described by Bethe formula

(sparing you the formula… )

● Definition of MIP:
Minimum Ionizing Particle

Phys. Rev. D 98, 030001
doi:10.1103/PhysRevD.98.030001

https://doi.org/10.1103/PhysRevD.98.030001
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Energy Deposition – Fluctuations
● Strong fluctuations of energy loss: Landau-Vavilov distribution / Bichsel model

• Varying number interactions, energy transfer

• Secondary particles (e.g. delta rays)

• Most probable value (MPV) < Mean

● Photons: Photo effect, Compton effect,
pair production

● Creation of e/h pairs: 3.64 eV / pair
Fluctuations: Fano Factorσe /h=√N e /h √F

Phys. Rev. D 98, 030001
doi:10.1103/PhysRevD.98.030001

MPV Mean

https://doi.org/10.1103/PhysRevD.98.030001


18/07/2023S. Spannagel - EURIZON Detector School - Silicon Detectors II8

Particle Detection with Silicon Detectors
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Signal Formation
● Sensor operated as diode in reverse bias → depleted volume
● Signal formed by motion of e/h pairs in electric field

● Contribution to motion:

• Diffusion – Temperature-driven random motion, mean free path ~ 0.1 µm, mean 0

• Drift – Directed motion, depending on electric field and charge carrier mobility,
different parametrizations for mobility available, depending on temperature, silicon, …

● Motion stops when...
• Charge carriers reach readout electrode (conductor)

• Charge carriers recombine/get trapped (depends on purity, doping, lattice defects, …)



18/07/2023S. Spannagel - EURIZON Detector School - Silicon Detectors II10

Particle Detection with Silicon Detectors
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Segmented Silicon Sensors
for Position-Resolved Measurements
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The Diode

● Simplest semiconductor detector geometry
● Readout of a full area detector pad
● No spatial information
● Number of channels: 1

● Here:

• Strong p+ and weak n- doping create 
asymmetric pn-junction at the sensor surface

• Strong doping (n+) at the backside for Ohmic 
contact to backside metallization
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Strip Detector

● Segmentation of sensor surface
● Implementation of strips
● Typical pitches: 50 – 100 μm

typical strip lengths: mm – cm

• Number of channels: N
● Charge carriers propagate towards one or few strips

➔ 1D spatial information on particle traversal

➔ Add second layer for 2D information

  Strips   

  
Intermediate 
strips            
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Strip Detector – Adding a 2nd Layer
● 2D measurement using stereo angle

• Two detector modules on top of each other with a small relative rotation angle
• Limit on total particle rate due to ambiguities:

● “Ghost Hits”
• Appear with > 2 particles

crossing the sensor

• Impossible to distinguish
particle crossing point from
other strip coincidences 

→ Reason for small stereo angle! Reduce number of other strips crossed
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Pixel Detector

● Segmentation of sensor surface 
● Implementation of pixels or pads

● Typical pitches: 25 – 400 μm

• Number of channels: N2

● Charge carriers propagate towards one or few pixels

➔ 2D spatial information on particle traversal

➔ Many channels to be read out!
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Data Transmission
● Bandwidth & power consumption of data transmission critical for future experiments:

● Electrical transmission off-chip, conversion by optical transmitters
• Limited bandwidth     ~ Gb/s

• Driving signals is power consuming  ~ pJ/bit

• Additional material, electromagnetic interference, … 

● Silicon Photonics: external laser, modulation on ASIC
• Increased bandwidth    >> 10 Gb/s

• Energy efficient, only modulation << pJ/bit
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≥ 450 kPix → 450 kPix⋅20 bit⋅10−5 occupancy ≃ 90b → 90 bit
20ns

⩾ 4.5Gbs−1cm−2
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Strip vs. Pixel Detectors

Strip Detectors Pixel Detector

Readout channels N N2

Position information 1D
Ghost hits @ high occupancy

2D
 – 

Typical sensor size Wafer-scale few centimeters
Production Lower production cost per area Higher production cost per area

Readout Direct interconnect at sensor 
edge

Complex interconnects,
many channels
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Combining Strip & Pixel Detectors

Typical Compromise

● Pixel detector at center of experiment
• Smaller size → reduces costs

• Pixel detector can cope with high 
occupancy close to IP

● Strip detector at larger radii
• Lower occupancy 

→ reduced probability for ghost hits

• Reduction in number of
readout channels 

CMS

S
tri

ps
P

ix
el

s

S
tri

ps

S
tri

ps
+

P
ix

el
s

P
ix

el
s

ATLAS



18/07/2023S. Spannagel - EURIZON Detector School - Silicon Detectors II19

Combining Strip & Pixel Detectors
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● Segmentation of both sensor surface and backside
● Orthogonal strips on both sides

● Electrons and holes propagate towards 
opposite segmented surfaces
➔ 2D Spatial information on particle traversal

✔ Number of channels: 2N

✗ Disadvantage w.r.t. pixel detector:
Ghost hits possible in case of simultaneous hits

✗ Re-introduces some production/connectivity complexity w.r.t strip sensors

Double-Sided Strip Detectors
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Resolution
Position Measurement, Charge Sharing et. al
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Resolution
● How well can my detector reconstruct the 

lateral position of a traversing particle?

● Spatial resolution  Width of residual≡
● Residual  Distance between ≡

reconstructed position and true position
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Particle Position Reconstruction

● Estimation of the lateral position of the 
particle traversal

● Use information of signal per strip (pixel)
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Particle Position Reconstruction

● Single responding pixel:
• “This pixel was hit”

• No information of where inside the 
pixel the particle was located
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Particle Position Reconstruction

● Single responding pixel:
• “This pixel was hit”

• No information of where inside the 
pixel the particle was located
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Particle Position Reconstruction

● Single responding pixel:
• “This pixel was hit”

• No information of where inside the 
pixel the particle was located
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Particle Position Reconstruction

● Single responding pixel:
• “This pixel was hit”

• No information of where inside the 
pixel the particle was located

➔ Resolution: 
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Spatial Resolution
● The probability of particle crossing particular detector channel

is uniformly distributed
● Normalized probability density function:

● Variance of position measurement:

● Uncertainty:
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Particle Position Reconstruction

● Several responding pixels:

a) Calculate center of hit pixels

b) Calculate center of gravity using 
signal amplitudes of individual pixels
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Particle Position Reconstruction

● Several responding pixels:

a) Calculate center of hit pixels

b) Calculate center of gravity using 
signal amplitudes of individual pixels

➔Resolution: 
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Charge Sharing – Inclined Tracks & Lorentz Drift
● Charge sharing: distribution of charge carriers / signal over several strips (pixels)
● Can significantly improve the spatial resolution
● Often used: Inclined particle incidence along x & Lorentz drift along y
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The η Correction
● COG (geometric mean)

presumes linear charge sharing
● Mostly not the case:

Sharing only at pixel edges
● η (“eta”) distribution encodes

actual charge sharing & allows for correction

● Prerequisite: same statistics idea as for single pixel:

The probability of particle crossing particular
detector channel is uniformly distributed
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The η Correction
 Build eta distribution Calculate cumulative distr. Apply as correction
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Examples – Measurements & Simulations

→ Lab Exercise 11
py = 100 mμ
d = 285 mμ

● CMS Phase I Pixel Detector, data recorded in testbeam experiments 
● Detector rotated relative to beam to emulate magnetic field in CMS experiment
● Simulations with Allpix Squared with 3.8 T magnetic field
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Spatial Resolution – Summary
● Just a single channel struck:

precision limited to variance of uniform distribution 

● Multiple channels struck (charge sharing):
interpolation using relative energy / charge distribution

● Thinner sensors: less charge sharing… 
● η correction might be necessary… 

Q

x
particle

x
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Particle Detection with Silicon Detectors
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Digitization: Threshold

● Simplest possible measurement:
hit or no hit

● Amplify signal
● Define threshold
● Check if signal crosses threshold: 1

Otherwise: 0

● Very compact readout
● No possibility of interpolation!
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Digitization: Time of Arrival & Time over Threshold

 Time over Threshold 

Time of Arrival

Clock

● Energy & space-efficient way to
measure time & charge

● Times of threshold crossing “marked”
on a clock, clock cycles counted

● Especially useful with front-ends
that have linear return-to-baseline
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Digitization: Analog-to-Digital Converter
● If signal is above threshold, full

integrated charge is collected
● Digitization with ADC
● Precise charge measurement but

demanding in space (& power)
● Often placed in periphery, information

from pixel transmitted as analog signals
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Squaring the Circle
Requirements for Current & Future Tracking Detectors
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Silicon Tracking Detectors in Particle Physics
● Silicon tracking detectors have long history in particle physics
● Instrumental in discovery of Higgs boson at LHC
● Larges detectors installed in ATLAS & CMS 

• Tracking detectors: strips, 200 m2 silicon, 70M channels

• Vertex detectors:  pixels, 1 m2 silicon, 140M channels

● Detector upgrades for HL-LHC in preparation
• More resilient against radiation-induced damage

• Additional capabilities (e.g. triggering)

1983: NA11 / CERN

2007: CMS Tracker / CERN

2000: ZEUS MVD / DESY

2017: CMS Phase 1 Pixel / CERN
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Challenges for Silicon Detectors

Material Budget

Resolution &
Granularity

Radiation Hardness

Readout Speed &
Power Consumption
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The Future of High-Energy Particle Physics
● European Strategy Update: possible directions for particle physics

• Importance of fundamental detector R&D specifically highlighted

● Higgs boson plays unique role in extending knowledge
• Address questions within SM, provide sensitivity to new physics

• Yukawa couplings, self-couplings, branching ratios

• Precision measurements required

● Highest priority: future lepton collider
• Different initial states

• New opportunities
& challenges

CERN EP Newsletter
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Silicon Detector Requirements at a Lepton Collider
● Precision measurements especially demanding on vertex & tracking detectors

• Momentum resolution  – large lever arm, minimum scattering

• Impact parameter resolution – high resolution, minimum scattering

• Time resolution    – fast sensor response, large S/N

● Physics studies for lepton colliders provide guidelines:

Lepton Colliders (HL-) LHC 
(ATLAS/CMS)

Material budget < 1% X0 10% X0

Single-point resolution ≤ 3 µm ~ 15µm
Time resolution ~ ps – ns 25ns
Granularity ≤ 25 µm x 25 µm 50µm x 50µm

Radiation tolerance < 1011 neq / cm2 O(1016 neq / cm2)
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Prospective R&D

Targeted R&D

Guided R&D

Construction    

Collisions

 Define 
requirements from 
physics program,
precision targets

 Explore ideas,
new concepts

 Technology 
evaluation

 Simulations

 Proof-of-principle

 Technology
consolidation

 Demonstrators

 Design 
optimization

 Performance 
studies

 Full-scale 
prototypes,
engineering

 System 
integration

Towards Next-Generation Tracking Detectors
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