

https://www.desy.de/

Silicon Detectors II

Particle Detection & Position Resolution

1.1

Simon Spannagel

EURIZON Detector School

18 July 2023

Particle Detection with Semiconductor Detectors

Recap: Particle Interaction, e/h Pair Generation

Particle Detection with Silicon Detectors

Energy Deposition – Energy Loss

(heavy) charged particles:
 Mean energy loss described by Bethe formula

(sparing you the formula...)

• Definition of MIP: Minimum Ionizing Particle

Energy Deposition – Fluctuations

- Strong fluctuations of energy loss: Landau-Vavilov distribution / Bichsel model
 - Varying number interactions, energy transfer
 - Secondary particles (e.g. delta rays)
 - Most probable value (MPV) < Mean
- Photons: Photo effect, Compton effect, pair production

• Creation of e/h pairs: 3.64 eV / pair Fluctuations: **Fano** Factor $\sigma_{e/h} = \sqrt{N_{e/h}} \sqrt{F}$

Particle Detection with Silicon Detectors

Signal Formation

- Sensor operated as diode in reverse bias \rightarrow depleted volume
- Signal formed by motion of e/h pairs in electric field
- Contribution to motion:
 - Diffusion Temperature-driven random motion, mean free path ~ 0.1 μ m, mean 0
 - **Drift Directed motion**, depending on electric field and charge carrier mobility, different parametrizations for mobility available, depending on temperature, silicon, ...
- Motion stops when...
 - Charge carriers reach readout electrode (conductor)
 - Charge carriers recombine/get trapped (depends on purity, doping, lattice defects, ...)

Particle Detection with Silicon Detectors

Segmented Silicon Sensors

for Position-Resolved Measurements

The Diode

- Simplest semiconductor detector geometry
- Readout of a full area detector pad
- No spatial information
- Number of channels: 1

- Here:
 - Strong p⁺ and weak n⁻ doping create asymmetric pn-junction at the sensor surface
 - Strong doping (n⁺) at the backside for Ohmic contact to backside metallization

Strip Detector

- Implementation of strips
- Typical pitches: 50 100 µm typical strip lengths: mm – cm

- Number of channels: N
- Charge carriers propagate towards one or few strips
 - ➔ 1D spatial information on particle traversal
 - ➔ Add second layer for 2D information

Strip Detector – Adding a 2nd Layer

- 2D measurement using stereo angle
 - Two detector modules on top of each other with a **small relative rotation angle**
 - Limit on total particle rate due to ambiguities:
- "Ghost Hits"
 - Appear with > 2 particles crossing the sensor
 - Impossible to distinguish particle crossing point from other strip coincidences

→ Reason for **small stereo angle!** Reduce number of other strips crossed

Pixel Detector

- Segmentation of sensor surface
- Implementation of pixels or pads
- Typical pitches: 25 400 μm

- Number of channels: N²
- Charge carriers propagate towards one or few pixels
 - ➔ 2D spatial information on particle traversal
 - ➔ Many channels to be read out!

S. Spannagel - EURIZON Detector School - Silicon Detectors II

Bandwidth & power consumption of data transmission **critical for future experiments**:

 $\sim Gb/s$

$\frac{1 \, cm^2 \text{chip area}}{5 \, cm^2 \text{pixel pitch}} \ge 450 \, kPix \rightarrow 450 \, kPix \cdot 20 \, \text{bit} \cdot 10^{-5} \text{occupancy} \simeq 90 \, b \rightarrow \frac{90 \, \text{bit}}{20 \, ns} \ge 4.5 \, Gb \, s^{-1} cm^{-2}$ $(15 \mu m)^2$ pixel pitch

Data Transmission

Electrical transmission off-chip, conversion by optical transmitters ٠

- Limited bandwidth
- Driving signals is power consuming ~ pJ/bit
- Additional material, electromagnetic interference, ...
- Silicon Photonics: external laser, modulation on ASIC ٠
 - Increased bandwidth >>10 Gb/s ٠
 - **Energy efficient, only modulation** << *pJ/bit*

18/07/2023

•

Strip vs. Pixel Detectors

	Strip Detectors	Pixel Detector
Readout channels	Ν	N ²
Position information	1D Ghost hits @ high occupancy	2D -
Typical sensor size	Wafer-scale	few centimeters
Production	Lower production cost per area	Higher production cost per area
Readout	Direct interconnect at sensor edge	Complex interconnects, many channels

Combining Strip & Pixel Detectors

Typical Compromise

- Pixel detector at center of experiment
 - Smaller size → reduces costs
 - Pixel detector can cope with high occupancy close to IP
- Strip detector at larger radii
 - Lower occupancy

 → reduced probability for ghost hits
 - Reduction in number of readout channels

Strips

Pixels

z [mm]

n **= 2.0**

n = 3.0

= 4.0

3500

Combining Strip & Pixel Detectors

Double-Sided Strip Detectors

- Segmentation of both sensor surface and backside
- Orthogonal strips on both sides
- Electrons and holes propagate towards opposite segmented surfaces
 - ➔ 2D Spatial information on particle traversal

- ✓ Number of channels: 2N
- Disadvantage w.r.t. pixel detector:Ghost hits possible in case of simultaneous hits
- Re-introduces some production/connectivity complexity w.r.t strip sensors

Resolution

Position Measurement, Charge Sharing et. al

Resolution

- How well can my detector reconstruct the lateral position of a traversing particle?
- **Spatial resolution** ≡ Width of residual
- **Residual** ≡ Distance between reconstructed position and true position

DESY.

- Estimation of the lateral position of the particle traversal
- Use information of signal per strip (pixel)

- Single responding pixel:
 - "This pixel was hit"
 - No information of where inside the pixel the particle was located

- Single responding pixel:
 - "This pixel was hit"
 - No information of where inside the pixel the particle was located

- Single responding pixel:
 - "This pixel was hit"
 - No information of where inside the pixel the particle was located

- "This pixel was hit"
- No information of where inside the pixel the particle was located

→ Resolution:
$$\sigma = \frac{d}{\sqrt{12}}$$

Spatial Resolution

- The probability of particle crossing particular detector channel ٠ is uniformly distributed
- Normalized probability density function: ٠

$$\int_{-\frac{d}{2}}^{\frac{d}{2}} f(x) \, \mathrm{d}x = 1 \quad \rightarrow \quad f(x) = \frac{1}{d}$$

Variance of position measurement: ۲

$$\sigma_x^2 = E[x^2] - \langle x \rangle^2 = \int_{-\frac{d}{2}}^{\frac{d}{2}} x^2 f(x) \, \mathrm{d}x - \left(\int_{-\frac{d}{2}}^{\frac{d}{2}} x f(x) \, \mathrm{d}x\right)^2 = \frac{1}{d} \int_{-\frac{d}{2}}^{\frac{d}{2}} x^2 \, \mathrm{d}x - \left(\frac{1}{d} \int_{-\frac{d}{2}}^{\frac{d}{2}} x \, \mathrm{d}x\right)^2$$
$$= \frac{1}{d} \frac{x^3}{3} \Big|_{-\frac{d}{2}}^{\frac{d}{2}} - \frac{1}{d^2} \frac{x^4}{2} \Big|_{-\frac{d}{2}}^{\frac{d}{4}} = \frac{d^2}{12}$$

Uncertainty: $\sigma_x = d/\sqrt{12}$ ٠

- Several responding pixels:
 - a) Calculate center of hit pixels
 - b) Calculate **center of gravity** using signal amplitudes of individual pixels

$$x = \frac{\sum_{i=1}^{N} q_i x_i}{\sum_{i=1}^{N} q_i}$$

- Several responding pixels:
 - a) Calculate center of hit pixels
 - b) Calculate **center of gravity** using signal amplitudes of individual pixels

Charge Sharing – Inclined Tracks & Lorentz Drift

- Charge sharing: distribution of charge carriers / signal over several strips (pixels)
- Can significantly improve the spatial resolution
- Often used: Inclined particle incidence along *x* & Lorentz drift along *y*

The η Correction

- COG (geometric mean) presumes linear charge sharing
- Mostly not the case: Sharing only at pixel edges
- η ("eta") distribution encodes actual charge sharing & allows for correction

• Prerequisite: same statistics idea as for single pixel:

The probability of particle crossing particular detector channel is uniformly distributed

The η Correction

Build eta distribution

Calculate cumulative distr.

Apply as correction

S. Spannagel - EURIZON Detector School - Silicon Detectors II

33

Examples – Measurements & Simulations

- CMS Phase I Pixel Detector, data recorded in testbeam experiments
- Detector rotated relative to beam to emulate magnetic field in CMS experiment
- Simulations with Allpix Squared with 3.8 T magnetic field

S. Spannagel - EURIZON Detector School - Silicon Detectors II

Spatial Resolution – Summary

• Just a **single channel** struck: precision limited to variance of uniform distribution

$$x = x_i \qquad \rightarrow \qquad \sigma_x = d/\sqrt{12}$$

• **Multiple channels** struck (charge sharing): interpolation using relative energy / charge distribution

$$x = \frac{\sum_{i=1}^{N} q_i x_i}{\sum_{i=1}^{N} q_i}$$

- Thinner sensors: less charge sharing...
- η correction might be necessary...

Particle Detection with Silicon Detectors

Digitization: Threshold

Digitization: Time of Arrival & Time over Threshold

Digitization: Analog-to-Digital Converter

- If signal is above threshold, full integrated charge is collected
- Digitization with ADC
- Precise charge measurement but demanding in space (& power)
- Often placed in periphery, information from pixel transmitted as analog signals

Squaring the Circle

Requirements for Current & Future Tracking Detectors

Silicon Tracking Detectors in Particle Physics

- Silicon tracking detectors have long history in particle physics
- Instrumental in discovery of Higgs boson at LHC
- Larges detectors installed in ATLAS & CMS
 - Tracking detectors: strips, 200 m² silicon, 70M channels
 - Vertex detectors: pixels, 1 m² silicon, 140M channels

- Detector upgrades for HL-LHC in preparation
 - More resilient against radiation-induced dam
 - Additional capabilities (e.g. triggering)

S. Spannagel - EURIZON Detector School - Silicon Detectors II

Challenges for Silicon Detectors

The Future of High-Energy Particle Physics

- European Strategy Update: possible directions for particle physics
 - Importance of fundamental detector R&D specifically highlighted
- Higgs boson plays unique role in extending knowledge
 - Address questions within SM, provide sensitivity to new physics
 - Yukawa couplings, self-couplings, branching ratios
 - Precision measurements required
- Highest priority: future lepton collider
 - Different initial states
 - New opportunities & challenges

ider e+e-HL-LHC LHC 2030 2040 e+e-LC/CLIC FCC-ee/CEPC CERN EP Newsletter CERN EP Newsletter 2060

Silicon Detector Requirements at a Lepton Collider

- Precision measurements especially demanding on vertex & tracking detectors
 - Momentum resolution
 - Impact parameter resolution –
- large lever arm, minimum scattering
- high resolution, minimum scattering

Time resolution

- fast sensor response, large S/N
- Physics studies for lepton colliders provide guidelines:

	Lepton Colliders	(HL-) LHC (ATLAS/CMS)
Material budget	< 1% X ₀	10% X ₀
Single-point resolution	≤ 3 µm	~ 15µm
Time resolution	~ ps – ns	25ns
Granularity	≤ 25 µm x 25 µm	50µm x 50µm
Radiation tolerance	< 10 ¹¹ n _{eq} / cm ²	O(10 ¹⁶ n _{eq} / cm ²)

Towards Next-Generation Tracking Detectors

