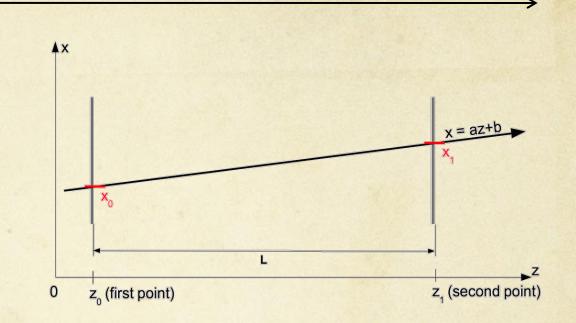


Institut Phyliciplinaire Hubert CURREN (1) and at Oin 2 nd (baudot@in2p3.fr)

Tracking version 0.0

O Hypothesis:

- ➤ Two sensors
 - <u>perfect</u> positions
 - Infinitely thin
- → 1 straight tracks
 - 2 parameters (a,b)



• Estimation of track parameters
• Assuming track model is straight

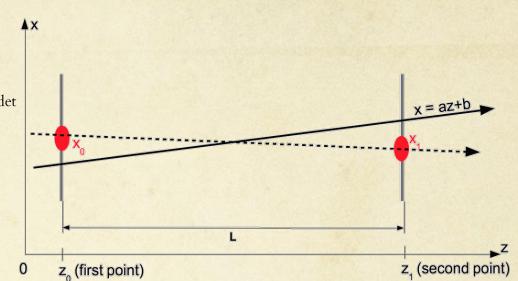
 $a = \frac{x_1 - x_0}{z_1 - z_0}$, $b = \frac{x_0 z_1 - x_1 z_0}{z_1 - z_0}$

→ No uncertainty !

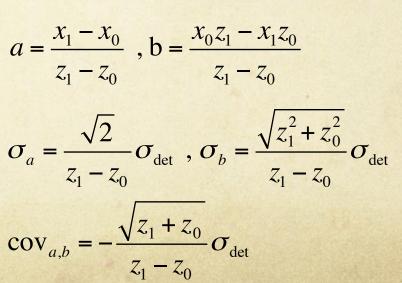
Tracking version 1.0

O Hypothesis:

- → Two sensors
 - Positions with UNCERTAINTY σ_{det}
 - Infinitely thin
- → 1 straight tracks
 - 2 parameters (a,b)



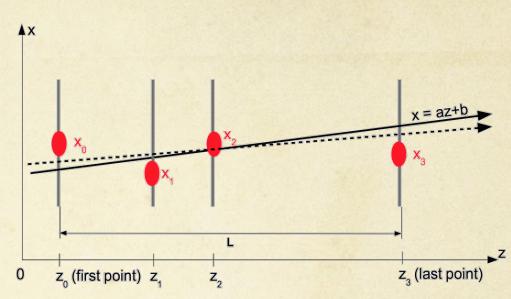
- Estimation of track parameters
 - Assuming track model is straight
 - Uncertainties from error propagation



Tracking version 1.1

O Hypothesis:

- More than two sensors
 - Positions with uncertainty σ_{det}
 - Infinitely thin
- 1 straight tracks
 - 2 parameters (a,b)

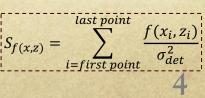


- Estimation of track parameters
 - Assuming track model is straight
 - Need FITTING PROCEDURE least square
 - Need covariance matrix of measurements (here <u>diagonal</u>)
 - Uncertainties from error propagation
 - Detail depends on geometry
 - =>Both estimation & uncertainties improve

$$a = \frac{S_1 S_{xz} - S_x S_z}{S_1 S_{z^2} - (S_z)^2} , b = \frac{S_x S_{z^2} - S_z S_{xz}}{S_1 S_{z^2} - (S_z)^2}$$

$$\sigma_a^2 = \frac{S_1}{S_1 S_{z^2} - (S_z)^2} , \ \sigma_b^2 = \frac{S_{z^2}}{S_1 S_{z^2} - (S_z)^2}$$

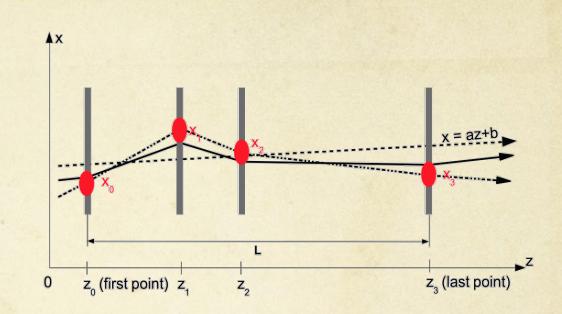
$$\operatorname{cov}_{a,b} = \frac{-S_z}{S_1 S_{z^2} - (S_z)^2}$$



Tracking version 2.0

O Hypothesis:

- More than two sensors
 - Positions with uncertainty σ_{det}
 - With some THICKNESS
 → physics effects
- → 1 straight tracks
 - 2 parameters (a,b)



- Estimation of track parameters
 - Assuming track model is straight
 - Need fitting procedure least square
 - Need covariance matrix of measurements physics effect \rightarrow NON DIAGONAL terms
 - Uncertainties from error propagation
 - => Same estimators but uncertainties enlarged

Complex covariant matrix expression

 $a = \frac{S_1 S_{xz} - S_x S_z}{S_1 S_{-2} - (S_z)^2} , b = \frac{S_x S_{z^2} - S_z S_{xz}}{S_1 S_{-2} - (S_z)^2}$

- correlation between sensors
- Depends clearly on geometry
- Various implementations possible

Tracking version 2.0

O Hypothesis:

- More than two sensors
 - Positions with uncertainty σ_{det}
 - With some THICKNESS \rightarrow physics effects
- → 1 straight tracks
 - 2 parameters (a,b)
- Hey, is it fine to use the same track parameters along the trajectory

▲X

z, (last point

- Estimation of track parameters
 - Assuming track model is straight
 - Need fitting procedure least square
 - Need covariance matrix of measurements physics effect \rightarrow NON DIAGONAL terms
 - Uncertainties from error propagation
 - => Same estimators but uncertainties enlarged

Various implementations possible

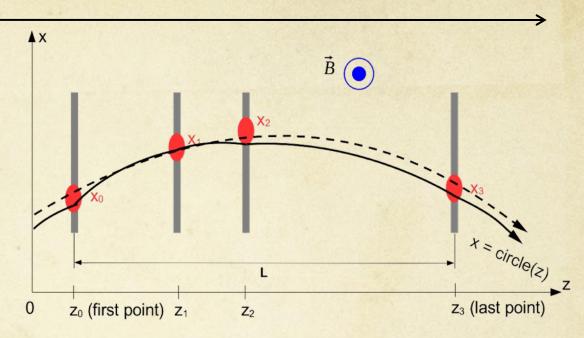
Complex covariant matrix expression

 $a = \frac{S_1 S_{xz} - S_x S_z}{S_1 S_{-2} - (S_z)^2} , b = \frac{S_x S_{z^2} - S_z S_{xz}}{S_1 S_{-2} - (S_z)^2}$

Tracking version 2.1

O Hypothesis:

- More than two sensors
 - Positions with uncertainty σ_{det}
 - With some THICKNESS
 → physics effect
- No more straight track
 - Magnetic field \rightarrow helix
 - 5 parameters \rightarrow one is \vec{p}_T



- Estimation of track parameters
 - → As before
 - Non diagonal covariance matrix
 - Enlarged uncertainties from physics effect
 - → BUT fitting more complex
 - Higher dimensions from 5 params
 - Non-linearities from model

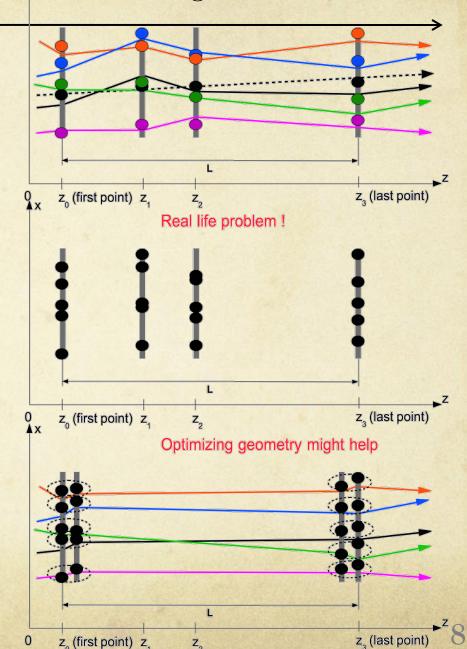
Influence of geometry from

- Overall layout
- Interplay with physics layers
- Shape of sensing layers wrt particle incidence

Tracking RELOADED

O Hypothesis:

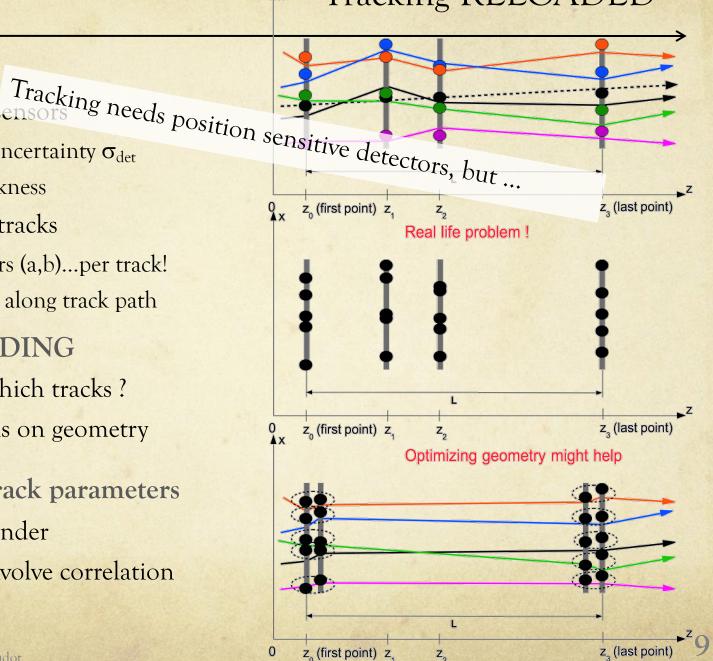
- More than two sensors
 - Positions with uncertainty σ_{det}
 - With some thickness
- MANY straight tracks
 - Still 2 parameters (a,b)...per track!
 - But may change along track path
- New step = FINDING
 - Which hits match which tracks ?
 - Strongly depends on geometry
- Estimation of track parameters
 - Happens after finder
 - Uncertainties involve correlation

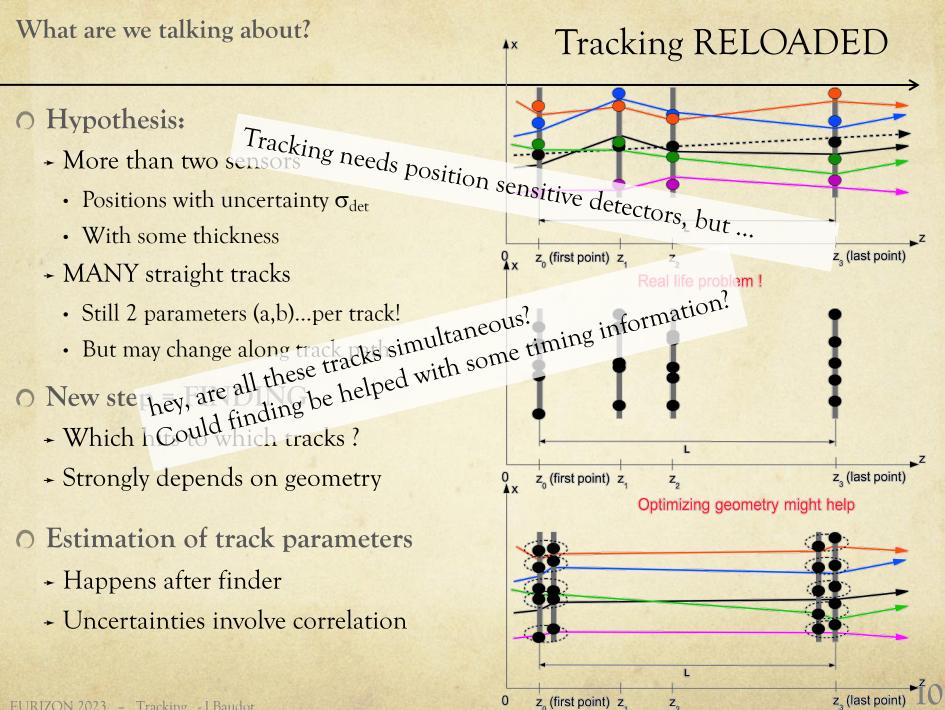


Tracking RELOADED

• Hypothesis:

- More than two sensors needs pe
 - Positions with uncertainty σ_{det}
 - With some thickness
- MANY straight tracks
 - Still 2 parameters (a,b)...per track!
 - But may change along track path
- New step = FINDING
 - Which hits to which tracks ?
 - Strongly depends on geometry
- Estimation of track parameters
 - Happens after finder
 - Uncertainties involve correlation



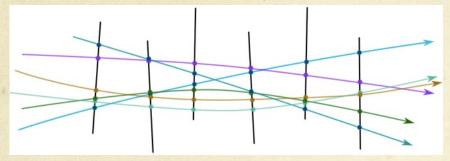


EURIZON 2023 - Tracking - J.Baudot

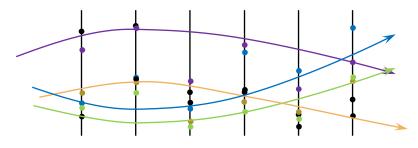
Additional real-life troubles

• Alignment:

What was mechanically constructed



What you think you built!



Alignment procedure needed

EURIZON 2023 - Tracking - J.Baudot

- O Radiation environment
 - → Intensity & energy frontiers
 → large radiation exposure
 - ➤ Total ionizing dose
 - Possible effects starting ~ kGy
 - Worst conditions ~ GGy
 - Non ionizing energy loss fluence
 - Possible effects starting ~ $10^{12} n_{eq(1MeV)}/cm^2$
 - Worst conditions ~ $10^{18} n_{eq(1MeV)}/cm^2$

Hardening/Monitoring needed

O Temperature

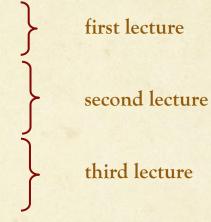
- Electronics heat-up
 performance degrades with temperature
- Radiation tolerance depends on temperature

Cooling => additional material

11

Lecture outline

- 1. Basic concepts
- 2. Finding algorithms
- 3. Fitting algorithms
- 4. Existing tracking systems
- References



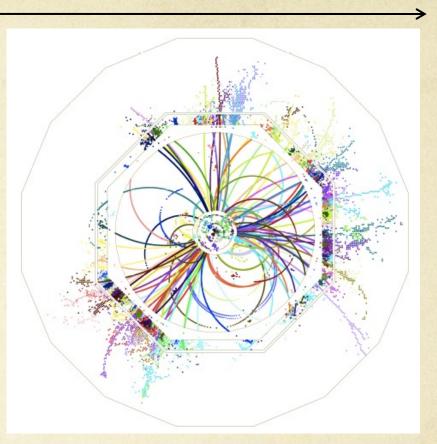
Motivations basic concepts

- O Motivations
- Types of measurements
- O The 2 main tasks
- O Environmental considerations
- Figures of merit

Motivations

• Understanding an event

- → Individualize tracks ~ particles
- Measure their properties
- + LHC: ~1000 particles per 25 ns "event"
- O Particle/Track properties
 - → Momentum/charge ⇔ curvature in B field
 - Reconstruct invariant masses
 - Contribute to jet energy estimation
 particle flow algorithm (pfa)
 - → Origin ⇔ vertexing (connecting track)
 - Identify decays
 - Measure flight distance
 - Mass \Leftrightarrow dE/dx measurement
 - → Time/collision ⇔ Identification through time of flight
 - ► Energy ⇔ range measurement
 - Limited to low penetrating particle (typically ions at few 100 MeV/u)



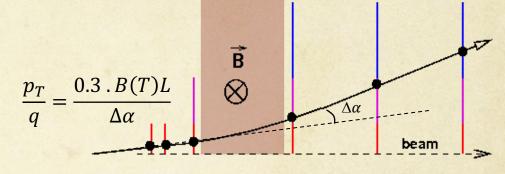
8 jets event (tt-bar h) @ 1 TeV ILC

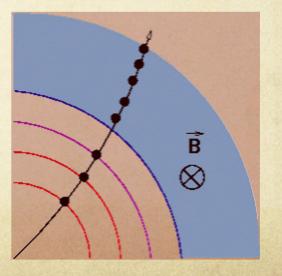
Momentum measurement

• Magnetic field curves trajectories
$$\frac{d\vec{p}}{dt} = q\vec{v} \times \vec{B}$$

(r- φ) plane: circle $p_T = 0.3zBR$ $\vec{p} = \vec{p_T} + \vec{p_z}$ (r-z) plane: straight line $p_z = p \cos \lambda$

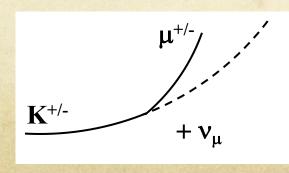
- In B=4T a 10 GeV/c particle will get a saggita of 1.5 cm @ 1m
- Fixed-target experiments
 - Dipole magnet on a restricted path segment
 - Measurement of deflection (angle variation)
- Collider experiment
 - Barrel-type with axial B over the whole path
 - Measurement of curvature (sagitta) $p_T(\text{GeV/c}) = 0.3 \cdot B(T) \cdot R(m)$
- Other arrangements
 - → Toroidal B... not covered
- Two consequences
 - Position sensitive detectors needed
 - Perturbation effects on trajectories
 - ➡ limit precision on track parameters

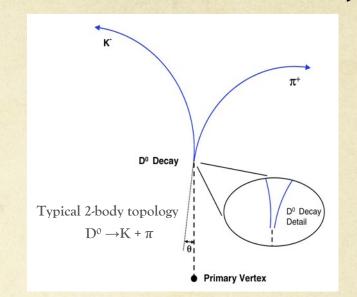


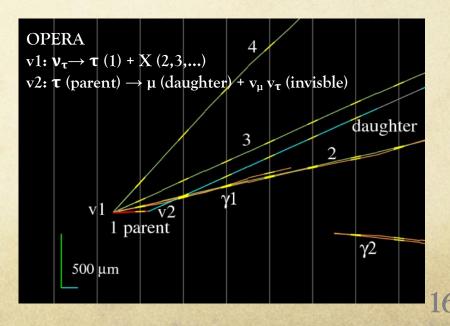


Vertex measurements 1/3

- O Identifying through topology
 - Short-lived weakly decaying particles
 - Charm cτ~ 120 μm
 - Beauty $c\tau \sim 470 \ \mu m$
 - τ , strange (K_S, Λ)/charmed (D)/beauty (B) particles
- Exclusive reconstruction
 - Decay topology with secondary vertex
 - Exclusive = all particles in decay associated
- O Inclusive "kink" reconstruction
 - Some particles are invisible (ν)



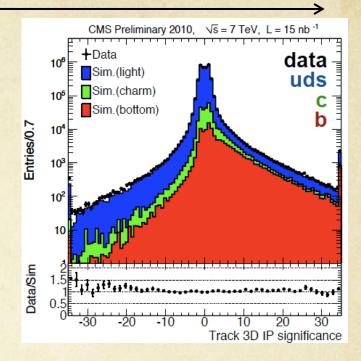


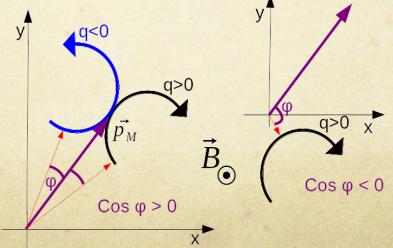


Vertex measurements 2/3

) Inclusive reconstruction

- Selecting parts of the daughter particles
 = flavor tagging for high energy colliders
- based on impact parameter (IP)
- + σ_{IP} ~ 20-100 µm and SIGN_{IP} requested
- O Definition of impact parameter (IP)
 - Also DCA = distance of closest approach from the trajectory to the primary vertex
 - Full 3D or 2D (transverse plane: d_p) +1D (beam axis: d_z)
 - Sign extremely useful for flavor-tagging

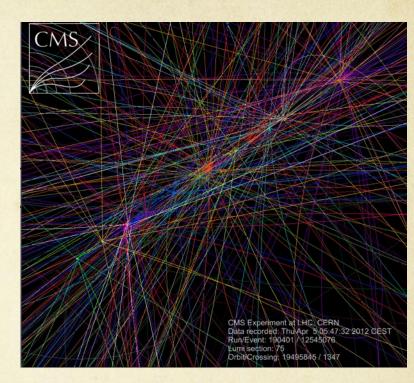




Sign defined by angle dca / jet momentum

Vertex measurements 3/3

- Finding the event origin
 - Where did the collision did occur?
 - = Primary vertex
 - (life)Time dependent measurements
 - CP-asymmetries @ B factories (Δz≃60-120 µm)
 - Case of multiple collisions / event
 - >> 10 (100) vertex @ LHC (HL-LHC)



• Remarks for collider

- Usually no measurement below 1-2 cm / primary vertex
 - Due to beam-pipe maintaining vacuum
 - Vacuum operation practically easier for fixed target (eg MVD of CBM) BUT realized for LHCb (VErtex LOcator) at LHC
- Requires extrapolation \rightarrow expect "unreducible" uncertainties

Multiple scattering - 1/5

- Reminder on the physics (see other courses)
 - Coulomb scattering mostly on nuclei
 - Molière theory description as a centered gaussian process
 - the thinner the material, the less true → large tails

O <u>In-plane</u> description (defined by vectors p_{in}, p_{out})

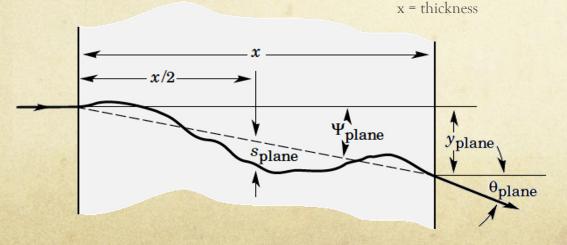
- Corresponds to $(\varphi, \theta = \theta_{\text{plane}})$ with $\mathbf{p}_{\text{in}} = \mathbf{p}_z$ and $p_{out}^2 = p_{out,z}^2 + p_{out,T}^2$

Highland formula:
$$\sigma_{\theta} = \frac{13.6 \text{ (MeV/c)}}{\beta p} \cdot z \cdot \sqrt{\frac{\text{thickness}}{X_0}} \cdot \left[1 + 0.038 \ln(\frac{\text{thickness}}{X_0})\right]$$

$$p_{out} \cos\theta \approx p_{out,z}$$

$$p_{out,T} = p_{out} \sin\theta \approx p_{out}\theta$$

(note :
$$\phi \in [0, 2\pi]$$
 uniform)
 β , p, z = particle boost, momentum, charge

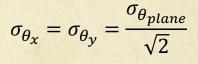


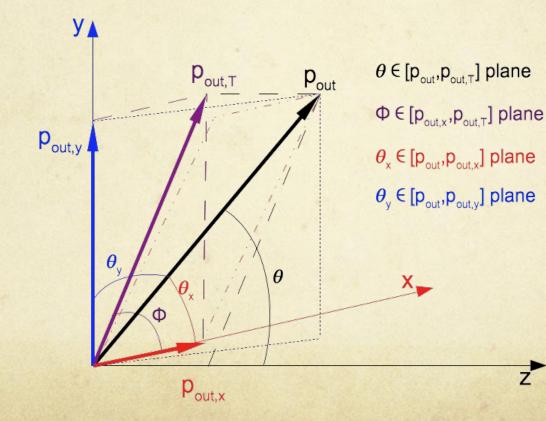
Xo = radiation length

Same definition as in calorimetry ... though this is accidental

Multiple scattering -2/5

- $\begin{array}{l} \bullet \quad \underline{\text{In-space description (defined by fixed x/y axes)}}_{\star \quad \text{Corresponds to } (\boldsymbol{\theta}_{x}, \boldsymbol{\theta}_{y}) \text{ with } p_{out,T}^{2} = p_{out,x}^{2} + p_{out,y}^{2} \\ \end{array} \begin{cases} p_{out} \sin \theta_{x} \approx p_{out} \theta_{x} \\ p_{out} \sin \theta_{y} \approx p_{out} \theta_{y} \end{cases} \\ = & \begin{array}{l} \bullet \\ P_{plane}^{2} = \theta_{x}^{2} + \theta_{y}^{2} \\ \end{array} \end{cases}$
 - + $\boldsymbol{\theta}_{x}$ and $\boldsymbol{\theta}_{y}$ are independent gaussian processes



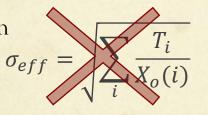


Multiple scattering – 3/5

- Important remark when combining materials
 - Total thickness $T = \Sigma T_i$, each material (i) with $X_0(i)$
 - Definition of effective radiation length => $X_{0.eff} = \frac{\sum_{i=1}^{n} X_{0.eff}}{\pi}$
 - Consider single gaussian process

$$\sigma_{eff} \Rightarrow X_{0,eff} = \frac{\sum_{i} T_{i} X_{i}}{T}$$
$$\sigma_{eff} = \sqrt{\frac{T}{X_{o,eff}}}$$

and never do variance addition (which minimize deviation)



Multiple scattering – 4/5

• Some common materials in trackers

material	X ₀	std deviation for protons at 1 GeV/c			B=2T, p=1 GeV/c	
		thickness	Budget	$\sigma_{\rm hit}$ @ 10 cm	sagitta at 10 cm	Relative difference
Silicon	9.4 cm	100 µm	0.1 %	50 µm	760 µm	6 %
Ероху	30 cm	1 mm	0.3 %	90 µm		12 %
NaI	2.6 cm	1 mm	3.8%	350 µm		46 %
Gas (air-CH4)	300-700 m	10 cm	<10-3	-		10 /0

Actually very large! / goal $\frac{\sigma_p}{p} \approx 10^{-3}$

Particle type matters!

 $\sigma_{\theta} \propto \frac{1}{\beta}$ with depending on mass

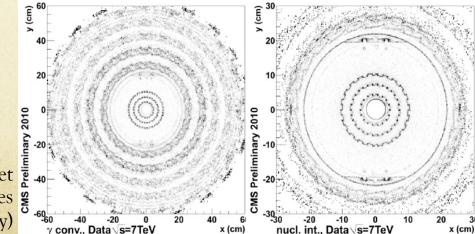
Multiple scattering -5/5

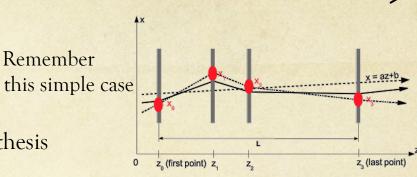
- O Impact on tracking algorithm
 - The track parameters evolves along the track !
 - May drive choice of reconstruction method
 - Effect amplitude depends on particle mass hypothesis

O Photon conversion

- Alternative definition of radiation length probability for a high-energy photon to generate a pair over a path dx: $Prob = \frac{dx}{9}$
- $\gamma \rightarrow e^+e^- = \text{conversion vertex}$
- + Generate troubles :
 - Additional unwanted tracks
 - Decrease statistics for electromagnetic calorimeter

CMS "picture" of material budget through photon conversion vertices (silicon tracker only) EURIZON 2023 - Tracking - J.Baudot





 $\frac{1}{7}X_0$

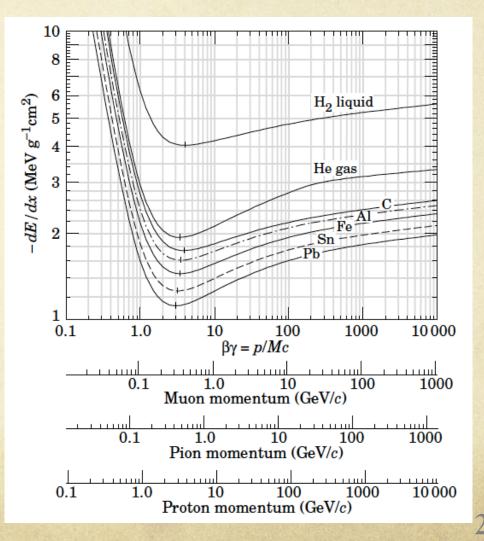
1.5

Energy Loss

- O 2nd reminder on physics
 - Detector measures something because there is energy loss: dE/dx
 - ➤ Typically
 - $\Delta E \sim 100 \text{ keV}$ over 300 μm Si
 - $\Delta E \sim 2.5$ keV over 1 cm Ar
- O Non-negligeable impact on p
 - Assuming MIP around $p \approx 1 \text{ GeV/c}$
 - Assume 10 Si layers of 300 μm or 40cm of Ar

-
$$\delta p \sim 1 \text{ MeV} \Rightarrow \frac{\delta p}{p} \approx 10^{-3}$$

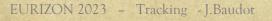
→ Reminder typical goal $\frac{\sigma_p}{p} \approx 10^{-3}$

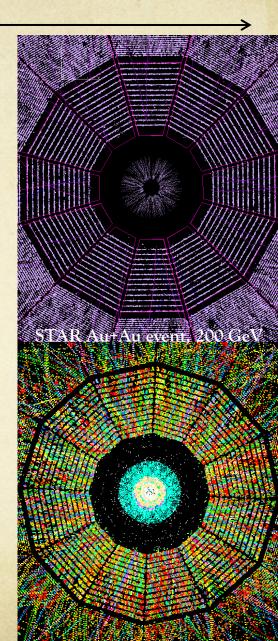


The two main tasks - 1/2

The collider paradigm

- Basic inputs from detectors
 - Succession of 2D or 3D points (or track segments)
 => Who's who ?
- O 2 steps process
 - Step 1: track identification = finding = pattern recognition
 - Associating a set of points to a track
 - Step 2: track fitting
 - Estimating trajectory parameters → momentum
- O Both steps require
 - Track model (signal, background)
 - Knowledge of measurement uncertainties (position resolution)
 - Knowledge of materials traversed (Eloss, mult. scattering)
- Vertexing needs same 2 steps
 - Identifying tracks belonging to same vertex
 - Estimating vertex properties (position + 4-vector)





The two main tasks - 2/2

The Telescope mode

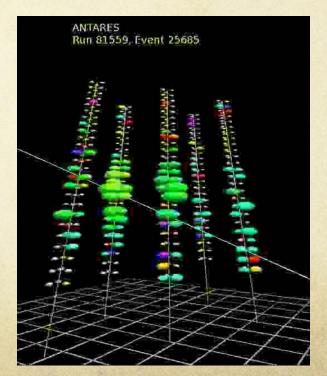
• Beam test

- Single (or a few) particle at a time
 - Sole nuisances = noise and material budget
- Trigger from beam
 - Often synchronous
- Goal = extrapolate particle position on detector under test
- The astroparticle way
 - Similar to telescope mode but estimate incoming direction
 - No synchronous timing
 - Ex: deep-water v telescopes

=> For 2 last cases: mostly a fitting problem

Usually with straight track model

EURIZON 2023 – Tracking - J.Baudot



Environmental conditions – 1/2

- Life in a real experiment is tough (for detectors of course, students are welcome!)
 - Chasing small cross-sections \rightarrow large luminosity and/or energy
 - Short interval between beam crossing (LHC: 25 ns)
 - Pile-up of events (HL-LHC >100 collisions / crossing)
 - Large amount of particles (could be > 10⁸ part/cm²/s)
 ⇒ background, radiation
- \Rightarrow Finding more complicated!
- \Rightarrow Requirements on detectors:
 - Fast timing
 - High granularity
- Vacuum could be required (space, very low momentum particles (CBM, LHCb))
- Radiation tolerance
 - Two types of energy loss
 - Ionizing (generate charges): dose in Gy = 100 Rad
 - Non-ionizing (generate defects in solid): fluence in n_{eq}(1MeV)/cm²
 - → The innermost the detection layer, the harder the radiation (radius² effect)
 - Examples for most inner layers:
 - LHC: 10^{15} to $<10^{17}$ n_{eq}(1MeV)/cm² with 50 to 1 MGy
 - ILC: $<10^{12} n_{eq}(1 MeV)/cm^2$ with 5 kGy

Environmental conditions - 2/2

- Timing consideration
 - Integration time drives occupancy level (important for finding algorithm)
 - Currently range in the ns (CMS, ATLAS) to µs (ALICE) levels
 - Time resolution offers time-stamping of tracks
 - Tracks in one "acquisition event" could be associated to their proper collision, event if several have piled-up
 - O(100) ps required
 - Time ultra-resolution for particle identification with Time Of Flight method
 - O(10) ps required
- Heat concerns
 - Spatial resolution → segmentation → many channels
 Readout speed → power dissipation/channel
 - Efficient cooling techniques exist BUT add material budget and may not work everywhere (space)

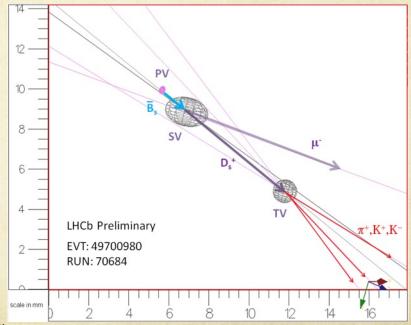
O Summary

- → Tracker technology driven by environmental conditions: hadron colliders (LHC)
- → Tracker technology driven by physics performances: lepton colliders (B factories, ILC), heavy-ion colliders (RHIC, LHC)
- → Of course, some intermediate cases: superB factories, CLIC

- For detection layer
 - Detection efficiency
 - Mostly driven by Signal/Noise
 - <u>Note:</u> Noise = signal fluctuation \bigoplus readout (electronic) noise
 - Intrinsic spatial resolution
 - Driven by segmentation (not only)
 - Useful tracking domain σ < 1mm
 - Linearity and resolution on dE/dx for PID
 - Material budget
- For detection systems (multi-layers)
 - Track finding efficiency & purity
 - Two-track resolution
 - Ability to distinguish two nearby trajectories
 - Mostly governed by signal spread / segments
 - Momentum resolution $\frac{\sigma(p)}{r}$
 - Impact parameter resolution
 - Sometimes called "distance of closest approach" to a vertex

Figures of Merit

- "Speed" (time resolution, hit rate)
 - Driven by signal collection & electronics
- Radiation tolerance



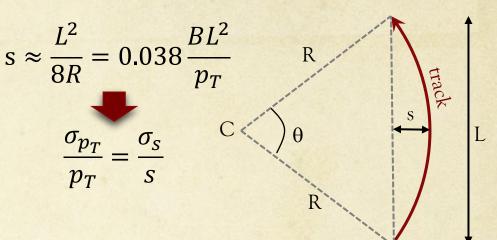
Figures of Merit: initial estimates

Units: T, GeV/c, m O Momentum resolution Based on sagitta (s) measurement $s \approx \frac{L^2}{8R} = 0.038 \frac{BL^2}{p_T}$ R in collider geometry \rightarrow L = lever arm of measurements σ_{p_T} + R = curvature radius $p_T/0.3B >> L$ σ_s p_T R Impact parameter resolution Creation point Based on two layers measurements → assume track straight over small distance: R_{ext}<< curvature - Each layer with spatial resolution: σ_{int} , σ_{ext} - Material budget $\rightarrow \sigma_{\theta}$ Rext → Telescope equation: beam $\sigma_{IP} \propto \frac{\sqrt{R_{ext}^2 \sigma_{int}^2 + R_{int}^2 \sigma_{ext}^2}}{R - R} \oplus \frac{R_{int} \sigma_{\vartheta(ms)}}{n \sin^{3/2}(\theta)}$

Figures of Merit: initial estimates

beam

- Momentum resolution
 - Based on sagitta (s) measurement in collider geometry
 - L = lever arm of measurements
 - + R = curvature radius $p_T/0.3B >> L$



Creation point

- Impact parameter resolution
 - Based on two layers measurements
 - → assume track straight over small distance: R_{ext} << curvature</p>
 - Each layer with spatial resolution: σ_{int} , σ_{ext}
 - Material budget $\rightarrow \sigma_{\theta}$
 - → Telescope equation:

$$\sigma_{IP} \propto \frac{\sqrt{R_{\text{ext}}^2 \sigma_{\text{int}}^2 + R_{\text{int}}^2 \sigma_{\text{ext}}^2}}{R_{\text{ext}} - R_{\text{int}}} \oplus \frac{R_{\text{int}} \sigma_{\theta(\text{ms})}}{p \sin^{3/2}(\theta)}$$

R_{ext}

2. Detector Technologies:

Simulating your favourite techno.

- Of course GEANT 4 is there for you (<u>https://geant4.web.cern.ch</u>)
 - But specialized for radiation-matter interaction & description of large geometries
 - + detail detector response to a given energy loss ? => specialized simulator

• Some specialized tools

- Semiconductors:
 - Allpix2 (<u>https://cern.ch/allpix-squared</u>)
- + Gas:
 - Garfield++ (<u>http://cern.ch/garfieldpp</u>)

- Solve or implement electric field in your drift volume
- Drift charges from ionization
- Simulate avalanche in gas
- Model electric signal

- O Local method
- O Global method
- O Methods based on machine learning

FINDING : 2 strategies

• Global methods

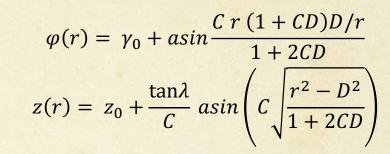
- Transform the coordinate space into pattern space
 - "pattern" = parameters used in track model
- Identify the "best" solutions in the new phase space
- → Use all points at a time
 - No history effect
- Well adapted to evenly distributed points with same accuracy
- O Local methods
 - Start with a track seed = restricted set of points
 - Could require good accuracy from the beginning
 - Then extrapolate to next layer-point
 - And so on...iterative procedure
 - "Wrong" solutions discarded at each iteration
 - Possibly sensitive to "starting point"
 - Well adapted to redundant information

FINDING drives tracking efficiency fake track rate

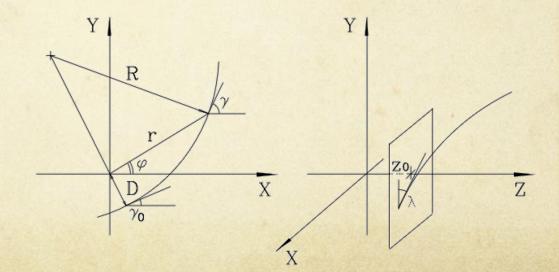
- A simple example
 - Straight line in 2D: model is $x = a^{*}z + b$
 - Track parameters (a,b); N measurements x_i at z_i (i=1..N)
- A more complex example
 - Helix in 3D with magnetic field
 - Track parameters (γ_0 , z_0 , D, $tan\lambda$, C=R)
 - Measurements/point (r, φ , z)

- Parameters: P-vector p
- Measurements: N-vector c
- Model: function f (\mathcal{R}^{P} + \mathcal{R}^{N})

 $f(p) = c \Leftrightarrow propagation$



Track model



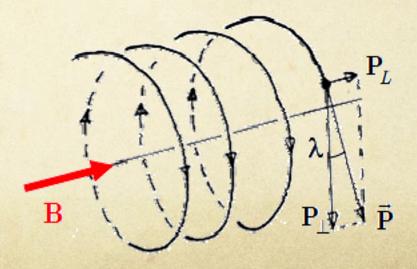
Helix model

- Another view of the helix
 - \rightarrow s = track length
 - \rightarrow h = rotation direction
 - λ = dip angle
 - → Pivot point (s=0):
 - position (x_0, y_0, z_0)
 - orientation ϕ_0

$$x(s) = x_o + R \left[\cos \left(\Phi_o + \frac{hs \cos \lambda}{R} \right) - \cos \Phi_o \right]$$

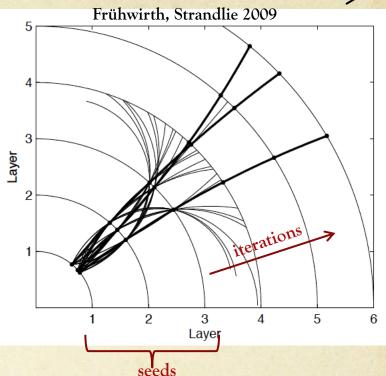
$$y(s) = y_o + R \left[\sin \left(\Phi_o + \frac{hs \cos \lambda}{R} \right) - \sin \Phi_o \right]$$

$$z(s) = z_o + s \sin \lambda$$



Local method 1/3

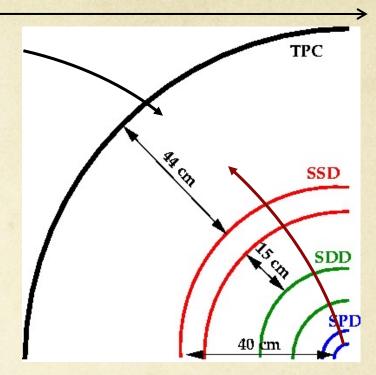
- O Track seed = initial segment
 - Made of few (2 to 4) points
 - One point could be the expected primary vtx
 - Allows to initialize parameter for track model
 - Choose <u>most precise</u> layers first
 - usually inner layers
 - → But if high hit density
 - Start farther from primary interaction
 <u>a lowest density</u>
 - Limit mixing points from different tracks
- Extrapolation step
 - Out or inward (=toward primary vtx) onto the next layer
 - Not necessarily very precise, especially only local model needed
 - Extrapolation uncertainty ≤ layer point uncertainty
 - Computation speed important
 - Match (associate) nearest point on the new layer
 - Might skip the layer if point missing
 - Might reject a point: if worst track-fit or if fits better with another track



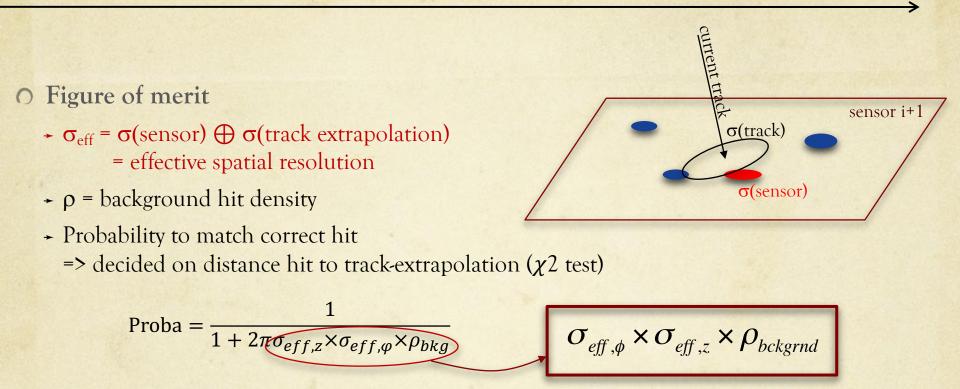
Local method 2/3

- Variant with track segments
 - First build "tracklets" on natural segments
 - Sub-detectors, or subparts with same resolution
 - Then match segments together
 - Typical application:
 - Segments large tracker (TPC) with vertex detector (Si)
 - ➤ layers dedicated to matching

 \bigcirc (Variant with Kalman filter \rightarrow See later)



Local method 3/3

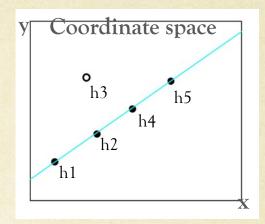


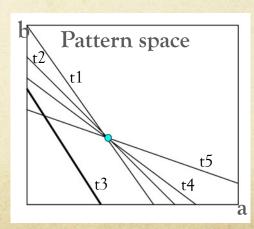
• Best suited to

- Accommodate diverse extrapolation precision at each layer
 - Multi-layer system with non-equidistant & non-equivalent resolution layers
- Easy to include timing information (just sum position & time χ^2)

Global methods 1/2

- Brute force = combinatorial way
 - Consider all possible combination of points to make a track
 - Keep only those compatible with model
 - Usually too time consuming...
- Hough transform
 - Example straight track:
 - Coord. space $y = a^*x + b \iff pattern space b = y x^*a$
 - Each point (y,x) defines a line in pattern space
 - All lines, from points belonging to same straight-track, cross at same point (a,b)
 - In practice: discretize pattern space and search for maximum
 - Applicable to circle finder
 - needs two parameters as well $(r, \phi \text{ of center})$ if track is assumed to originate from (0,0)
 - More difficult for more than 2 parameters...





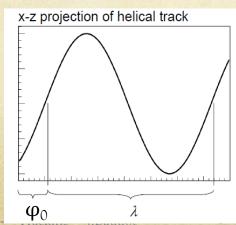
Global methods 2/2

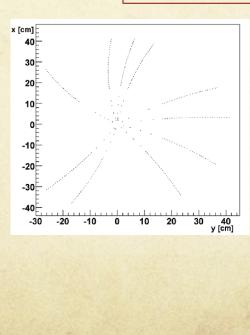
• Conformal mapping for helix

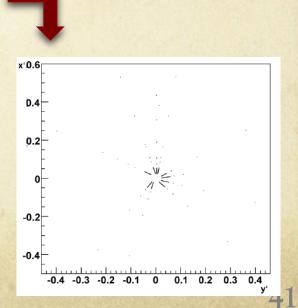
- + (x_0, y_0, z_0) a (pivot) point on the helix with (a,b) the center of the projected circle of radius r
 - $(x-a)^2 + (y-b)^2 = r^2$
- + Transforming to $x' = \frac{x x_0}{r^2}$, $y' = \frac{y y_0}{r^2}$ leads to $y' = -\frac{a}{h}x' + \frac{1}{2h}$ i.e. a line!
 - So all measured points (x,y) in circles are aligned in (x',y') plane
- Use Hough transform $(x',y') \rightarrow (r,\theta)$ so that $r = x' \cos \theta + y' \sin \theta$
 - To find the lines corresponding to true circles with $a = r \cos \theta$ and $b = r \sin \theta$
- Repeat for different z_0
 - New Hough transforms
 - $\lambda = dip angle$

EURIZON 202

• φ_0 = orientation of pivot point







Global methods 2/2

• Figure of merit

- Search precision in pattern space depends on bin-size in the pattern space
- Such bin-size ~ uncertainty on the measurements = $\sigma(\text{sensor}) \bigoplus \sigma(\text{multiple scatt.})$

 $\sigma_{eff,\phi} \times \sigma_{eff,z} \times \rho_{bckgrnd}$ • true $\varphi = 51.5^{\circ} p_{T}^{-1} = -0.14 \text{ GeV}^{-1} \varphi = 57.4^{\circ}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} = -0.21 \text{ GeV}^{-1}$ • pred $\varphi = 52.0^{\circ} p_{T}^{-1} =$

10

20

30

40

 $\varphi[^\circ]$

50

60

70

80