

Calorimetry: Basics of Calorimetry for High-Energy Physics

Eva Sicking (CERN)

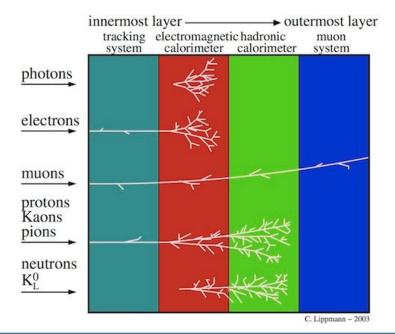
EURIZON detector school Wuppertal, Germany July 18, 2023

Outline

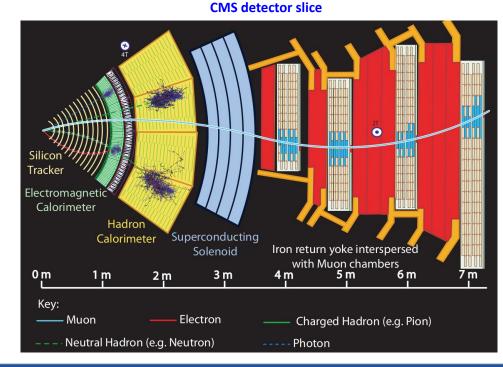
• Lecture 1

- Basics of calorimetry for High-Energy Physics
- Lecture 2
 - Modern HEP Calorimetry Systems
- Lecture 3
 - Particle-Flow Calorimeters
- Lecture 4
 - Dual Readout Calorimeters

- Overview
- Electromagnetic showers
- Hadronic showers
- Homogenous calorimeters
- Sampling calorimeters
- Energy resolution



Overview


Goal of this lecture

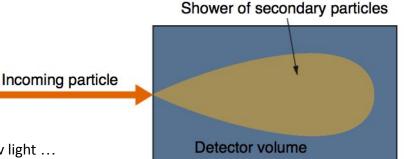
Introduce how calorimeters in High-Energy Physics experiments...

- ... measure neutral particles
- ... improve energy measurement of high-energetic charged particles
- ... help identify particles

Radial structure of a high-energy physics detector

What is calorimetry?

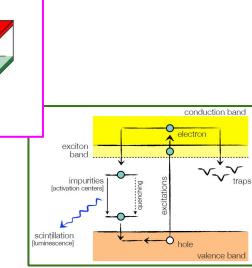
- In nuclear and particles physics, calorimetry is the **detection of particles** and **measurements of their properties** though **total absorption** in a block of matter
- Calorimetric measurement process is **destructive**
 - Particles are no longer available for inspection by other devices (except for muons)
- Name "Calorimetry" originates from the conversion of the particle energy into heat during the absorption process (Latin calor 'heat')

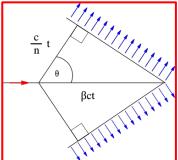

• However:

- In accelerator experiments, the particle energies go up to O(TeV)
- \circ 1 calorie (= 1 g water warmed up by 1°C) is equivalent to 10⁷ TeV
- Rise in temperature of detector material is negligible
- Other methods than temperature measurements are needed to determine the particle properties

Calorimetry: Concepts

- General idea
 - Primary particle creates shower of secondary particles in dense detector material
 - Each secondary particle deposits energy and produces further particles until the full energy is absorbed
 - Energy conversion into a measurable signal
- Shower particles interact with detection material
 - Via ionisation, atomic excitation, production of Cherenkov light ...
 - Depending on the calorimeter type, mostly one of these effects is measured and a signal is deduced
- "Practical" calorimeter
 - \circ Measured signal \propto deposited energy \propto energy of primary particle
- Primary particles that can be measured
 - $\label{eq:stable} \begin{array}{l} \circ & \mbox{Stable charged and neutral particles with} \\ & \mbox{sufficient long lifetime of } c\tau > 500 \mu m: \\ & \mbox{e}^{\pm} \,, \, \mu^{\pm} \,, \, \pi^{\pm} \,, \, K^{\pm} \,, \, p^{\pm} \,, \, K^{0} \,, \, n, \, \gamma \end{array}$

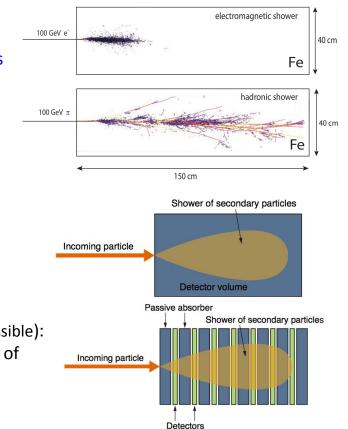

Calorimetry: Signal generation and detection


• Signal generation

- Shower particles can
 - Ionise the detector material
 - electron-ion pairs (gases, liquids) via ionisation
 - create electrons-hole pairs (solids) via ionisation
 - Excite atoms in the detector material:
 De-excitation of atoms can produce scintillation light
 - Emit Cherenkov light in case of v>c/n
 - Create bremsstrahlung, □-rays electrons, interact hadronically

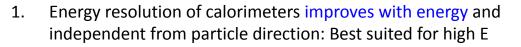
• Signal detection methods

- Ionisation
 - Apply an electric field in the detector volume
 - The ionisation electrons and ions/holes move in the E field
 - Moving charges induce signal on metal electrodes of detector
 - Read out signals by readout electronics
- Light
 - Cherenkov or scintillation light travels through transparent detector material
 - Read out light signal with photo detectors

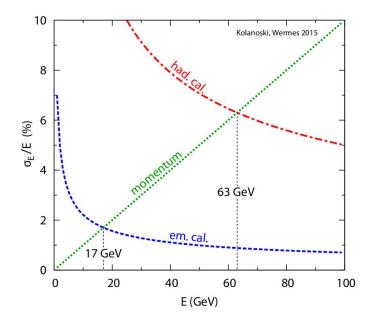


Calorimeter classes and types

Calorimeter classes

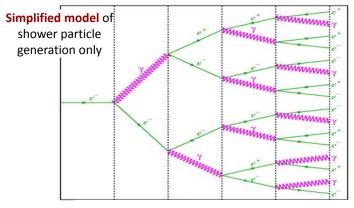

- Electromagnetic calorimeters
 - Measure electrons and photons through their EM interactions
 - Targeted at compact showers
- Hadron calorimeters
 - Measure hadrons through their strong interactions and EM interactions
 - Targeted at far reaching showers

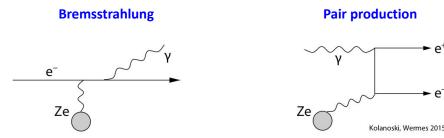
Construction classes


- Homogeneous calorimeters
 - Built of only one type of material that performs both tasks, energy degradation and signal generation
- Sampling calorimeters
 - Alternating absorber / active medium (many configurations possible):
 - Absorber, a dense material used to degrade the energy of the incident particle
 - Active medium that provides the detectable signal

Attractiveness of calorimeters for HEP

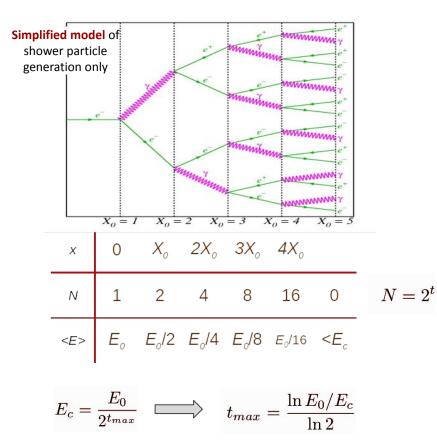
- 2. Measure both charged and neutral particles
 - Even indirect detection of neutrinos via missing energy
- 3. Versatile detectors
 - Measure shower energy, position, direction, arrival time, particle identification from shower shapes
 - \circ Fast signal (<100ns), easy to process and interpret \rightarrow trigger
- 4. Space and cost effective
 - Shower depth (required detector depth) increases with ~log E
 - Comparison: Bending power BL² of a magnetic spectrometer must increase linearly with the particle momentum


Example values used $\sigma_{E}/E = 7 \%/\sqrt{E}$ for electromagnetic showers $\sigma_{E}/E = 50 \% /\sqrt{E}$ for hadronic showers $\sigma_{p}/p = 0.1 \%$ p for E determination by p


Electromagnetic showers

Electromagnetic showers: Processes

Note: Similar shower development for incoming photon


Interactions in Coulomb field of nucleus with charge number Z

- An incoming e[±] emits a photon via **bremsstrahlung**
- The photon creates a e⁺e⁻ via pair production
 Cross sections: a e²
- Rapidly increasing number of e⁺ and e⁻ and photons until critical energy E_c is reached
 - E_c: energy at which the energy loss via bremsstrahlung and ionisation are equal
- Remaining e[±] loose energy via ionisation, photons via Coulomb scattering and photo effect

E.m. shower development theoretically well known. Can be simulated precisely (e.g. EGS, Geant4).

Electromagnetic showers: Radiation length

- X_o: Radiation length
 - Lengths after which the energy of the primary 0 particle E_0 is reduced to 1/e (~37%)
 - Number of particles doubles each X_o Ο
 - X_o decreases with increasing nuclear charge Z Ο

Material	z	Radiation length X ₀ (mm)
Air 20°C 1 atm	-	~304 000
Water	-	361
Iron	26	17.6
Tungsten	74	3.5
Lead	82	5.6
Uranium	92	3.2


Kolanoski, Wermes 2015

Electromagnetic showers: Longitudinal development

Kolanoski, Wermes 2015

25

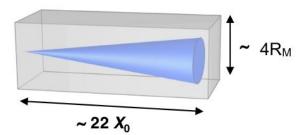
Kolanoski, Wermes 2015

July 18, 2023

0

95% of shower energy deposited after $t_{98\%} \cong t_{max} + 13.6 \pm 2.0$

Shower maximum at $t_{max} [X_0] \cong ln (E_0/E_c)$ $\begin{cases} -0.5 \text{ (electrons)} \\ +0.5 \text{ (photons)} \end{cases}$

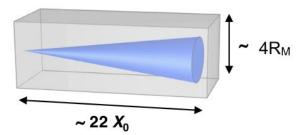

Number of particles N scales linearly with energy E_o of primary particle: N \propto E₀/E₂

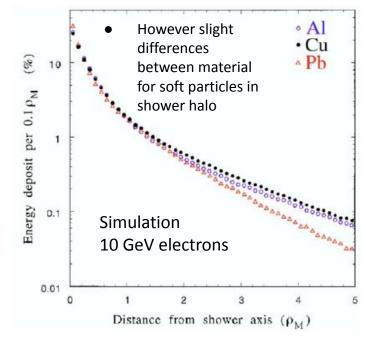
- t_{max} in units of X₀ depends on material through differences in critical energy E
 - Shower decay after \mathbf{t}_{\max} is slower for materials with higher Z

Electromagnetic showers: Lateral spread

CERN

- Longitudinal development governed by the radiation length X₀
- Lateral spread due to e^{\pm} undergoing multiple scattering and γ undergoing Compton scattering
 - \circ 95% of the shower cone is located in a cylinder of 2 times the **Molière radius** ρ_{M} (also R_{M})
- Molière radius $\rho_{\rm M} = E_{\rm s}/E_{\rm c} \cdot X_{\rm 0} = 21 \,{\rm MeV}/E_{\rm c} \cdot X_{\rm 0}$
 - Energy scale $E_s = \sqrt[3]{(4\pi/\alpha (m_e c^2))} = 21.2 \text{ MeV}$
- Molière radius important parameter for
 - Measurement of shower position
 - Shower separation
 - Detector design: Granularity in the order of Molière radius or finer

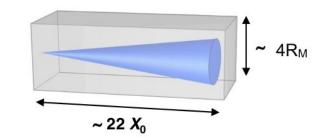


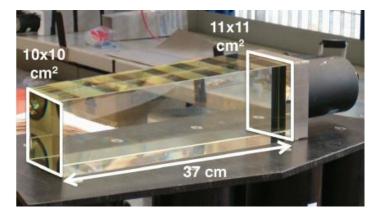

Material	Z	Molière radius ρ _M (mm)
Aluminium	13	44.0
Iron	26	16.9
Copper	29	15.2
Tungsten	74	9.3
Lead	82	16.0
Uranium	92	10.0

Electromagnetic showers: Lateral spread

CERN

- Longitudinal development governed by the radiation length X₀
- Lateral spread due to e^{\pm} undergoing multiple scattering and γ undergoing Compton scattering
 - \circ 95% of the shower cone is located in a cylinder of 2 times the **Molière radius** ρ_{M} (also R_{m})
- Molière radius $\rho_{\rm M} = E_s/E_c \cdot X_0 = 21 \text{MeV}/E_c \cdot X_0$ • Energy scale $E_s = \sqrt{(4\pi/\alpha \ (m_c^2))} = 21.2 \text{ MeV}$
- Molière radius important parameter for
 - Measurement of shower position
 - Shower separation
 - Detector design: Granularity in the order of Molière radius or finer




Electromagnetic showers: Example

Electron with $E_0 = 100 \text{ GeV}$, in lead glass (PbO + SiO₂)

OPAL calorimeter: lead glass blocks (37cm - 52cm) (Now in NA62)

 $N_{max} \approx E_0 / E_c$

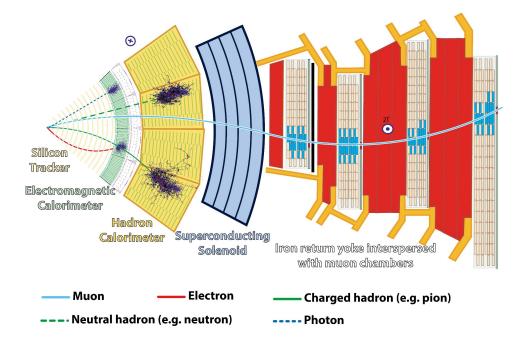
- $t_{max} \approx ln(E_0/E_c) 0.5$ $t_{98\%} \approx t_{max} + 13.6 \pm 2.0$
- $\rho_{M} \approx E_{s}/E_{c} * X_{0}$ $\rho_{95\%} \approx 2 \rho_{M}$

Rule of thumb for modern HEP detector design: need about 25 X_o ~8500

• $E_c = 11.8 \text{ MeV}$ • $X_o \approx 2 \text{ cm}$

~8.5 X₀ \approx 17 cm ≈ 44±4 cm ~(22±2) X₀

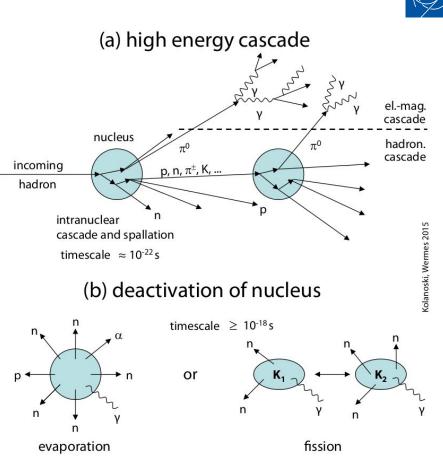
~3.6cm ~7.2cm



Hadronic showers

Hadronic showers: Introduction

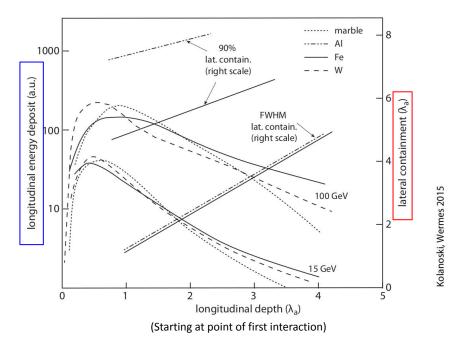
- Hadronic showers:
 - From primary charged hadrons (p, π^{\pm} , K^{\pm}) and neutral hadrons (n, K^{0})
- Hadron shower development:
 - Similar to electromagnetic shower development, but with hadronic interactions
 - Hadronic interactions governed by nuclear force, with smaller cross section than electromagnetic cross section


Impact on experiment layout:

 "Slim" e.m. calorimeter located in front of "thick" hadronic calorimeter

Hadronic showers: Processes

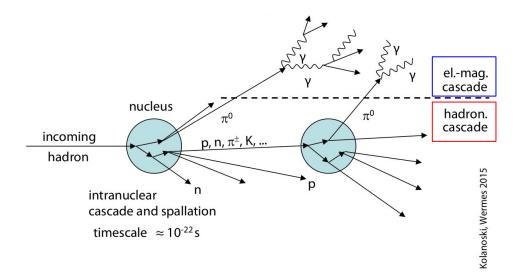
- Series of **inelastic** hadronic interactions of primary and secondary hadrons with the nuclei of the target material
- Multitude of possible processes:
 - Intra-nuclear cascade: Components of the nucleus receive enough energy to interact with each other and to produce pions or other hadrons
 - Inter-nuclear cascade: Particles escaping the nucleus hit another nucleus
 - Spallation
 - Nuclear excitation
 - Nuclear evaporation
 - Nuclear fission
- Elastic interactions
 - Do not produce secondary particles
 - Do not contribute to the hadronic shower development
- Between interactions and at end of shower, shower particles loose energy via ionisation and atomic excitation


Note: Hadronic shower development much more complicated than e.m. shower development, more difficult to simulate

Hadronic showers: Longitudinal & lateral development

Material	z	Nuclear interaction length $\lambda_{a}^{}(mm)$
Air 20°C 1 atm	-	~747 000
Iron	26	168
Tungsten	74	96
Lead	82	170
Uranium	92	105

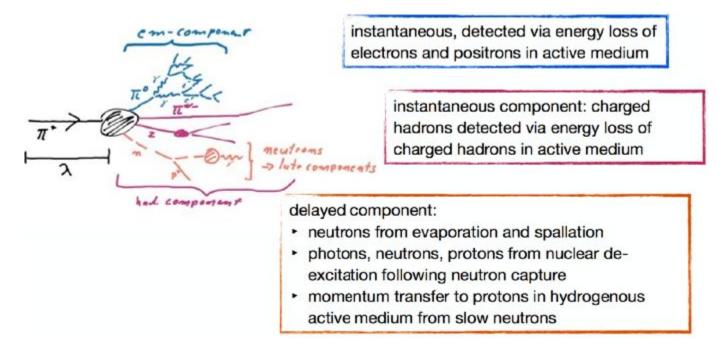
- Shower development scales with nuclear interaction length
- Empirical estimates:


◦
$$t_{max} \cong 0.2 \ln (E/GeV) + 0.7 \rightarrow \text{ in units of } \lambda_{2}$$

⇒
$$t_{95\%}^{\text{max}} \cong t_{\text{max}} + 2.5 \, (\text{E/GeV})^{0.13}$$

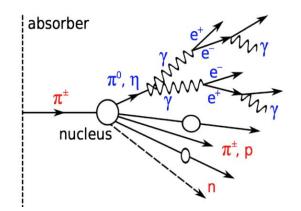
Rule of thumb for modern HEP detector design: need about $10 \lambda_a$

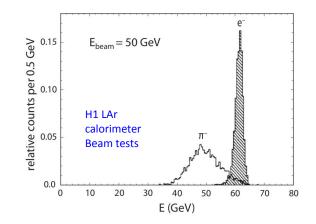
Hadronic showers: Shower substructure


Shower substructure:

- Secondary neutral mesons (π⁰, η) decay into photons
 - Electromagnetic sub-showers within hadronic shower
 - \circ Apriori not know which energy fraction carried by electromagnetic sub-shower

Hadronic showers: Time structure

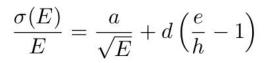

- Hadronic showers have a complex structure also in time
- Importance of delayed component in signal formation strongly depends on target nucleus
- Sensitivity to time structure depends on the choice of active medium (e.g. H content)



Hadronic showers: Energy response

- Absorption of purely hadronic shower involves energy-loss processes which do not create measurable signals:
 - Nuclear binding energy
 - Production of neutrinos and high energy muons
 - Kinetic energy of debris of nuclei
- No such energy loss mechanism in the e.m. shower
- Response of calorimeter
 - to purely hadronic component (h) usually smaller than
 - to purely e.m. component (e)
- e/h response ratio figure of merit of a hadron calorimeter
 - A priori e/h \neq 1 and energy dependent
 - An ideal calorimeter has similar response for both shower components: e/h=1

Compensation


• Hadron calorimeter response to hadronic and electromagnetic shower components:

$$R_h = e \cdot E_e + h \cdot E_h$$

- Fraction of energy deposited electromagnetically
 - Fluctuates between events and
 - Increases on average with energy of primary hadron:

 $\blacksquare \quad E_e^{} / E_e^{} = f_{EM}^{} = k \cdot \ln(E(GeV)), k \approx 0.1$

- Response of calorimeter to hadron shower becomes non-linear
- Energy resolution degrades

But

0

- e/h depends on geometry and material
- e/h=1 can be reached by increasing the hadronic signal
 - Hardware compensation
 - Increase neutron activity by use of special absorber (e.g. Uranium)
 - Increase sensitivity to slow neutrons (e.g. use Hydrogen enriched scintillator)
 - Choose favourable sampling fraction (thickness of absorber vs. active layers)
 - Software supported compensation
 - Identify dense (e.m.) and sparse regions (had.) in the shower and assign energy weights
 - Requires granularity
 - Software compensation never as good as hardware compensation

a= stochastic term of energy resolution

Energy resolution

Energy measurement: Intrinsic resolution

• For an ideal calorimeter with infinite dimensions, the energy resolution is determined by **stochastic fluctuations** of the **number of charged particles N** contributing to the signal

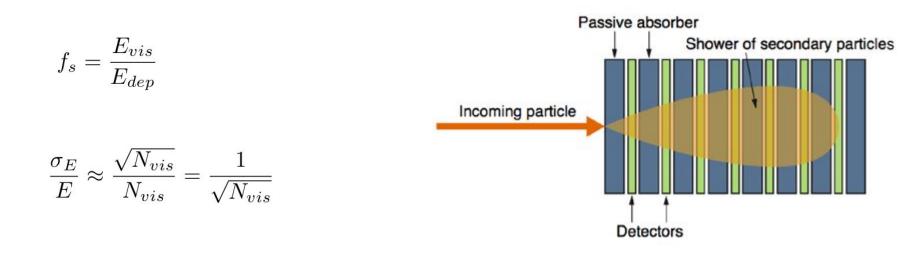
$$rac{\sigma_E}{E} \propto rac{\sigma_N}{N} pprox rac{\sqrt{N}}{N} = rac{1}{\sqrt{N}}$$

• Maximum number of particles contributing to the signal

$$\textit{N}_{max}=\textit{E}/\eta$$

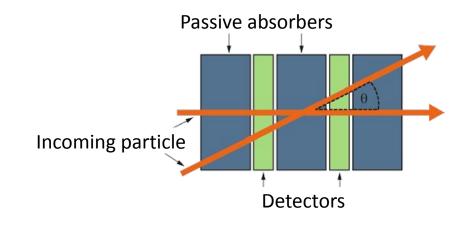
- η: threshold energy = minimum energy to create detectable secondary particle
 - Germanium: $\eta = 2.9 \text{ eV}$
 - Silicon: $\eta = 3.6 \text{ eV}$
 - Gas: $\eta = 30 \text{ eV}$
 - Plastic scintillator: $\eta = 100 \text{ eV}$

• In a realistic calorimeter further terms arise, with different energy dependencies (see later)

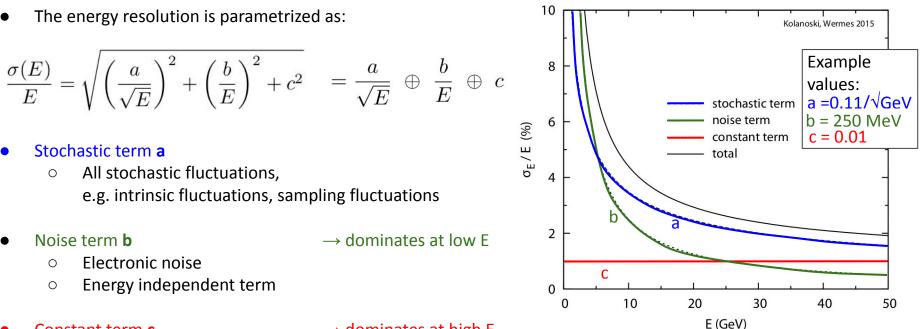


Energy measurement: Sampling fluctuations

• Sampling fluctuations


- Sampling calorimeters measure only a small fraction (few %) of the deposited energy
- Energy fraction f deposited in detection layers varies from event to event
- This deteriorates the energy resolution
- Driven by variation in number of charged secondary particles traversing the detector layers

Energy measurement: Other fluctuations



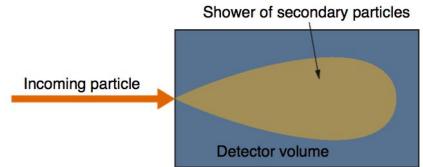
- Landau fluctuations
 - Thin detector layers
 - \rightarrow Asymmetric energy loss distribution (Landau instead of Gaussian distribution)
 - \rightarrow Important in gas and thin silicon detectors
- Track-length fluctuations
 - Secondary particles cross the detector planes under various angles
 - From event to event the total track length of secondary particles fluctuates
 - \rightarrow Deposited energy varies accordingly
 - \rightarrow Contribution to the energy resolution

Energy resolution: Parametrisation

• Constant term c

\rightarrow dominates at high E

- Mechanical and electronic imperfections, inhomogeneous response, calibration errors, dead channels, leakage
- Linearly dependent of energy



Homogeneous calorimeter examples

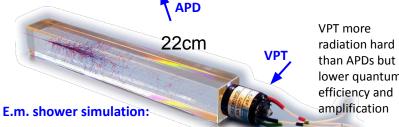
Homogeneous calorimeters

- One material used for both purposes
 - passive material that absorbs particle and
 - material that produces detectable signal
- Pros:
 - Very good energy resolution (measure the full shower energy)
- Cons:
 - Limited selection of materials
 - High costs
 - Detector element needs to be deep enough to absorb the full shower
 - Segmentation is difficult (limited information on shower shape),

Homogenous concept only for electromagnetic calorimeters

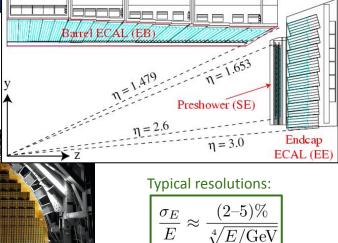
Signal	Material
Scintillation	Bismuth Germanate Bi ₄ Ge ₃ O ₁₂ = BGO Lead Tungstate PbWO ₄ BaF ₂ , CeF ₃ , CsI(TI)
Cherenkov light	Lead glass (PbO+ SiO ₂)
Ionisation	Liquid noble gasses (Ar, Kr, Xe), Germanium (in nuclear physics)

Homogeneous calorimeters: Scintillators


PbWO₄ (95% lead) monocrystals for CMS ECAL

ALICE PHOS

CMS ECAL Endcap (EE)


lower quantum

PbWO₄: Lead tungstate crystal

- Signal: Scintillation
- Very radiation hard 0
- Light detection (in CMS ECAL):
- Avalanche Photo Diodes (APD): Barrel 0
- Vacuum Phototriodes (VPT) Endcap Ο

CMS ECAL: Crystal orientation in direction of interaction point

July 18, 2023

Homogeneous calorimeters: Crystals

	NaI(Tl)	CsI(Tl)	CsI	BGO	PbWO ₄
Density (g/cm ³)	3.67	4.53	4.53	7.13	8.28
X_0 (cm)	2.59	1.85	1.85	1.12	0.89
R_M (cm)	4.5	3.8	3.8	2.4	2.2
Decay time (ns)	250	1000	10	300	5
slow component			36		15
Emission peak (nm)	410	565	305	410	440
slow component			480		
Light yield γ/MeV	4×10^{4}	5×10^{4}	4×10^{4}	8×10^{3}	1.5×10^{2}
Photoelectron yield	1	0.4	0.1	0.15	0.01
(relative to NaI)					
Rad. hardness (Gy)	1	10	10^{3}	1	10^{5}

- Higher light yield provides better energy resolution
- Selected material needs to fit time • and radiation requirement of experiment
- Materials need to be transparent . for scintillation signal

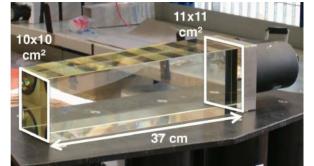
BaBar@PEPII/ Belle@KEKB

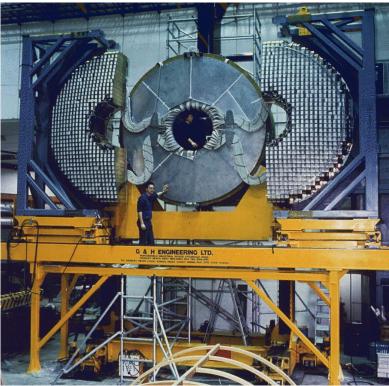
- 10ms
- interaction rate
- High light
- yield
- Low radiation dose

L3@LEP

- 25µs bunch • 25ns bunch crossing
- Medium light yield
- Low radiation dose

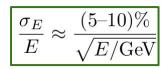
- CMS@LHC
- crossing
 - Lower light yield
 - High radiation dose


Homogeneous calorimeters: Cherenkov


Lead glass (PbO + SiO₂) calorimeter in OPAL detector

- Lengths between 37 and 52 cm
- Signal: Cherenkov light
 - Created for electron energy > 0.7MeV
- Light yield smaller than of scintillating crystal, leading to worse energy resolution than in crystals with scintillation signal
- Light detection: Vacuum photo-triodes (VPT)

OPAL calorimeter: lead glass (Now in NA62)

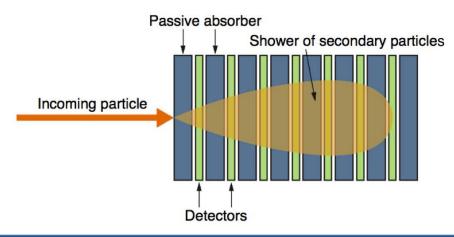


OPAL calorimeter endcap

Typical resolutions:

July 18, 2023

Eva Sicking: Basics of Calorimetry

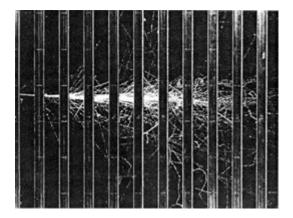


Sampling calorimeter examples

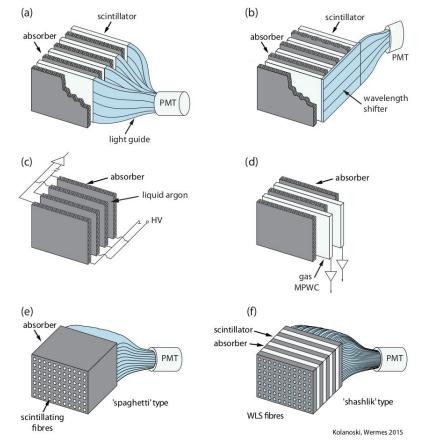
Sampling calorimeters

Sampling calorimeter: alternating layers/elements of passive absorbers and active detectors

- Typical absorbers: materials with high density:
 - Fe, Pb, W, U
- Typical active detectors:
 - Plastic scintillators
 - Silicon detectors
 - Noble liquid ionisation chambers
 - Gas detectors

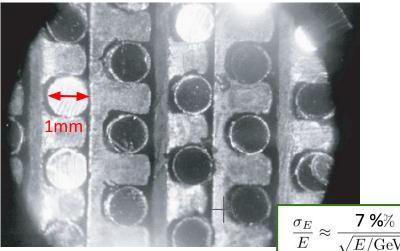


Pros:

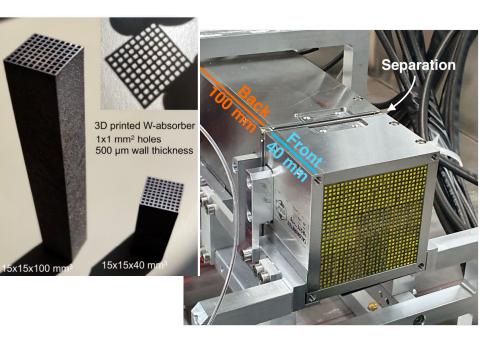

- Optimise absorber and detector material independently, targeted to application
- Dense absorber material allows for compact calorimeter
- Absorber material relatively cheap
- Cons:
 - \circ \quad Only fraction of shower energy is measured
 - Deteriorates energy resolution

Electromagnetic cascade of 4 GeV photon in cloud chamber filled with 1.3cm lead plates

Sampling calorimeters: Main layouts

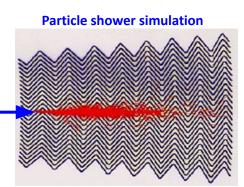

- "Sandwich"
 - (a)+(b): Scintillator
 - (c): Ionisation chamber based on liquid Argon (LAr), silicon
 - (d): Gas Detector: here: Multi-Wire-Proportional Chamber
- "Spaghetti"
 - (e): Absorber with scintillating fibres
- "Shashlik"
 - (f): Scintillating layers and wavelength shifting fibres

Note: Orientation of active components to particle direction varies in existing detectors

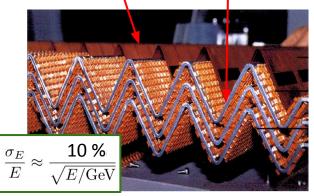

Sampling calorimeters: Spaghetti Calorimeters

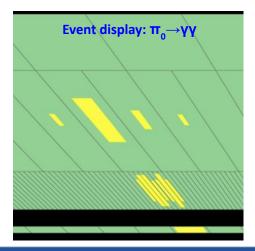
- SPACAL H1 @ HERA
 - Active layers: Scintillating fibres
 0.5mm or 1mm diameter (for ECAL or HCAL part)
 - Light generation and readout combined
 - Absorber: lead: Plates with grooves
 - No longitudinal segmentation

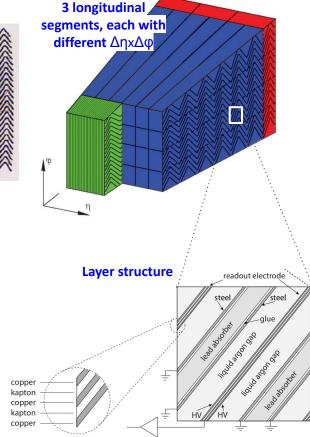
Nucl. Instr. Methods A., 386, 397-408 (1997)



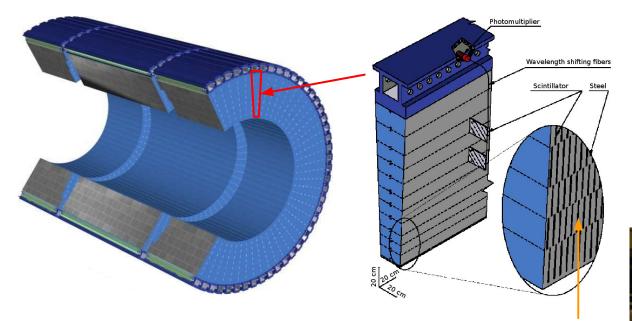
- LHCb SPACAL prototype for HL-LHC
 - Radiation-hard scintillating crystal fibres
 - Tungsten absorber
 - Can now be 3D printed, fibres inserted


Sampling calorimeters: Example ATLAS LAr ECAL




- Sampling calorimeter with Accordion structure
 - No cracks in azimuthal angle
- Absorber: Lead
- Active medium: Liquid Argon at 90K
 - Radiation resistant
- Signal used: Ionisation
- Honeycomb spacers position electrodes between lead absorber plates

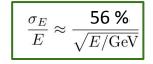
Cu readout electrodes, Pb absorber structure



July 18, 2023

Eva Sicking: Basics of Calorimetry

Sampling calorimeters: Example ATLAS TileCal (HCAL)



Particles from Interaction point

- Iron plates as absorber
- Plastic scintillating tiles as the active material 10 λ₂
- Scintillation light transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs)

Scintillator tiles in vertical orientation to incoming particle direction

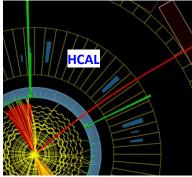
Sampling calorimeters: Example CMS Barrel HCAL

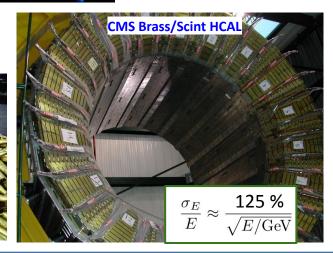
Absorber:

- Brass (70% Cu / 30% Zn)
- Thickness 50.5-56.5 mm
- Used over a million World War II brass shell casings from the Russian Navy
- Depth: between 5.5 and 10 λ_a + catcher layer behind magnet

Detector:

- Plastic scintillator with embedded wavelength shifting fibers
- Thickness 3.7 mm
- Scintillation light 410-425 nm: blue-violet
- The fibers absorb light and reemit it at 490 nm: green
- Hybrid Photodiodes convert light into electrical signals


Readout in towers


• No longitudinal segmentation in barrel, 2 segments in endcap

Scintillator tiles with wavelength shifting fibres

Event display

Eva Sicking: Basics of Calorimetry

Brass shell casings → absorber

Energy resolution examples: ECAL

Homogeneous calorimeters:

Experiment	Material	Energy resolution (E in GeV)
NA48	Liquid Kr	4.8%/√E ⊕ 0.22%
BELLE	CsI(TI)	0.8%/√E ⊕ 1.3%
CMS	PbWO ₄	2.7%/√E ⊕ 0.55%*

Energy resolution superior in homogeneous calorimeters w.r.t. sampling calorimeters

Sampling calorimeters:

Experiment	Detector	Detector thickness [mm]	Absorber material	Absorber thickness [mm]	Energy resolution (E in GeV)
UA1	Scintillator	1.5	Pb	1.2	15%/√E
SLD	liquid Ar	2.75	Pb	2.0	8%/√E
DELPHI	Ar + 20% CH ₄	8	Pb	3.2	16%/√E
ALEPH	Si	0.2	W	7.0	25%/√E
ATLAS	liquid Ar		Pb		10%/√E ⊕ 0.7%*
LHCb	Scintillator		Fe		10%/√E ⊕ 1.5%*

* Design values

Energy resolution examples: HCAL

$\langle $
(CÉRN)
NV

Experiment	Experiment Detectors		e/h	Energie resolution (E in GeV)	
UA1 C-Modul	Scintillator	Fe	≈ 1.4	80%/√E	
ZEUS	Scintillator	Pb	≈ 1.0	34%/√E	
WA78	Scintillator	U	0.8	52%/√E ⊕ 2.6%*	
D0	liquid Ar	U	1.11	48%/√E ⊕ 5%*	
H1	liquid Ar	Pb/Cu	≤ 1.025*	45%/√E ⊕ 1.6%	
CMS	Scintillator	Brass (70% Cu / 30% Zn) ≠ 1 10		100%/√E ⊕ 5%	
ATLAS (Barrel)	Scintillator	Fe	≠1	50%/√E ⊕ 3%**	
ATLAS (Endcap)	liquid Ar	Brass	≠1	60%/√E ⊕ 3%**	

Energy resolution superior for compensating calorimeters and deep calorimeters that fully contain the showers

* After software compensation

** Design values

Calibration

Calibration

- Before detector operation: Beam tests
 - Test calorimeters with variety of particles of known type and energy
- During detector operation: Study known physics processes of collider
 - ECAL
 - Bhabha scattering at e⁺e⁻ colliders
 - π^0 reconstruction from two photons
 - Reconstruction of known resonances J/Ψ , Z from e^+e^-
 - Comparison to other decay channels $(\mu^+\mu^-)$
 - Signal from minimum ionising particles (MIPs)
 - Radioactive sources with known gamma lines (when noise level is in keV range)
 - HCAL, combined with ECAL
 - Hadronic decay of vector boson W[±] and Z into two jets

events

5

Number

10

μ⁺ μ⁻ invariant mass [GeV]

Summary

- Calorimeters measure the energy and direction of charged and neutral particles
 - Electromagnetic Calorimeters (ECAL)
 - Measure electrons and photons through their EM interactions
 - Hadron Calorimeters (HCAL)
 - Measure hadrons through their strong and EM interactions: Very complex showers
 - Advantages
 - Required depth increases only logarithmically with particle energy → Compact, cost effective
 - Fast, easy to process and interpret \rightarrow Trigger
- Two types of calorimeters in HEP
 - \circ Homogeneous Calorimeters \rightarrow only used for ECALs
 - Only one material for energy degradation AND signal generation
 - Sampling Calorimeters

- \rightarrow used for ECAL and HCAL
- Alternating detector elements of
 - absorber material to degrade the energy of the incident particle, and
 - active material that provides the detectable signal
- Energy resolution
 - Improves with energy about like \rightarrow
 - Better than tracker at high energies

$$\frac{\sigma_E}{E} \approx \begin{cases} \frac{2-15\%}{\sqrt{E/\text{GeV}}} & \text{(ECAL)} \\ \\ \frac{35-120\%}{\sqrt{E/\text{GeV}}} & \text{(HCAL)} \end{cases}$$

References

- Book "Particle detectors: fundamentals and applications" by Hermann Kolanoski, Norbert Wermes Link
- Calorimetry I lecture at EDIT 2020 school by Erika Garutti Link
- Calorimetry lecture 2017 by Thomas Bergauer Link
- Calorimetry for particle physics, C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, NO. 4, 2003 Link
- Detector lectures at CERN Summer Student Lecture Programme 2023 by Werner Riegler Link
- Book "Calorimetry Energy measurement in particle physics" by Richard Wigmans Link

Backup

Energy resolution examples: ECAL

	Туре	X_0	R_M	Distance	Cell size at front surface	Thickno passive	ess/X_0	a/\sqrt{E}	Resolutio	ons (E in c	GeV) σ_{θ}	Experiment
		(cm)	(cm)	(cm)	(cm^2)	layer	total	(%),	(MeV)	(%)	(mrad)	
					h	omogene	ous calo	rimeters				
	NaI(Tl)	2.59	4.8	25.4	12.9		15.7	$2.8/\sqrt[4]{E}$	pprox 0.05		26 - 35	C. Ball [749]
	CsI(Tl)	1.85	3.5	92	4.7 imes 4.7		16	$2.3/\sqrt[4]{E}$	pprox 0.15	1.4	$4.2/\sqrt{E}$	BaBar [128, 840]
)	BGO	1.12	2.3	50	2×2		22	$\approx 2/\sqrt{E}$		0.7	≈ 10	L3 [50, 253]
	Pb glass	2.54	3.5	245	10×10		25	$6.3/\sqrt{E}$	11	0.2	4.5	OPAL [63]
	$PbWO_4$	0.89	2.0	130	2.2×2.2		25.8	$2.8/\sqrt{E}$	120	0.3	pprox 0.7	CMS [298]
	LKr	4.7	5.9	$\approx 100{\rm m}$	2.0×2.0		27	$3.2/\sqrt{E}$	90	0.42	0.001	NA 48 [954]
						samplin	g calorir	neters	7			
	Pb/sci (sandwich)	3.2	5.0	230	10×10	0.18	12.5	$6.5/\sqrt{E}$	<10	7.2	$6.5/\sqrt{E}$	ARGUS [73]
)	Pb/LAr	1.1	2.66	90	10 - 100	0.42	20 - 30	$11/\sqrt{E}$	150	0.6	$pprox 15/\sqrt{E}$ *	H1 [98,99]
	Pb/sci (shashlik)	1.7	4.15	1350	5.59×5.59	0.54	20	$11.8/\sqrt{E}$		1.4	$1.0/\sqrt{E} \oplus 0.2$	HERA-B [135]
	Pb/sci (spaghetti)	0.9	2.55	150	4.05×4.05		28	$7.1/\sqrt{E}$		1.0	$\approx 1 \mbox{ at } 30 {\rm GeV}$	H1 [111]
	Pb/LAr	≈ 2	≈ 4.1	150	14.7×0.47	pprox 0.4	22 - 24	$10/\sqrt{E}$	190	0.5 - 0.7	$\approx 1/\sqrt{E}$	ATLAS [4]
	U/sci	0.56	1.66	120	115 - 200	1.0	25	$18/\sqrt{E}$			$\approx 40/\sqrt{E}$ *	ZEUS [331]
	Pb/gas (PWC)	≈ 1.85	4.65	185	3×3	0.36	22	$18/\sqrt{E}$		0.9	$3.7/\sqrt{E}$	ALEPH [346]

Sampling

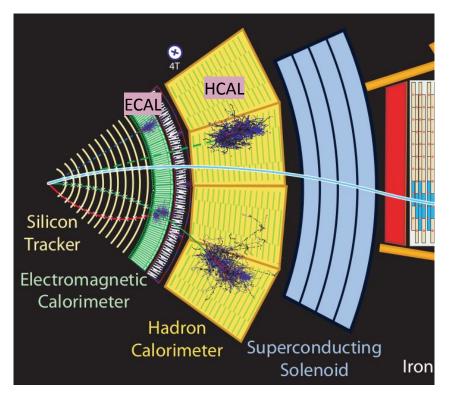
Energy resolution examples: ECAL+HCAL

Experiment	Cal.	Structure	e/h	Resolution $\frac{\sigma_E}{E}$	<u> </u>	$\oplus c$
& reference	Cui.	Surdebure	0/10	$a \ (\% \ \sqrt{\text{GeV}})^E$	$\sqrt{E} \ \ \ \ \ \ \ \ \ \ \ \ \$	c (%)
ALEPH [346, 264]	EM HAD	$_{ m Fe/LST}^{ m Pb/PWC}$	n.s.	18 85	n. s. n. s.	1.9 n. s.
DELPHI [11, 33]	EM HAD	$_{ m Fe/LST}^{ m Pb/TPC}$	n.s.	$\begin{array}{c} 23\\120\end{array}$	n. s. n. s.	4.3 n. s.
L3 [50,253]	EM HAD	BGO U/PWC	n.s.	$\begin{array}{c} 2.2 \\ 55 \end{array}$	n.s. n.s.	0.7 n. s.
OPAL [63]	EM HAD	Pb glass Fe/LST	n.s.	$\begin{array}{c} 6.3 \\ 120 \end{array}$	11 n.s.	0.2 n. s.
SLD $[136, 22]$	EM HAD	Pb/LAr Pb/LAr, Fe/LST	n.s.	$\frac{15}{60}$	n. s. n. s.	n. s. n. s.
ZEUS [1020, 96]	EM HAD	U/scin. $U/scin.$	1.00	$\frac{18}{35}$	n.s. < 500	n. s. 2.0
H1 [35]	EM HAD	$_{ m Fe/LAr}$	1.4	$\frac{11}{51}$	$\begin{array}{c} 250 \\ 900 \end{array}$	$\begin{array}{c} 1.0 \\ 1.6 \end{array}$
CDF [21]	EM HAD	Pb/scin. Fe/scin.	n. s.	$\frac{14}{80}$	n. s. n. s.	n. s. n. s.
D0 [13]	EM HAD	${ m U/LAr} { m U/LAr}$	1.08	$\frac{16}{45}$	n. s. 1300	$\begin{array}{c} 0.3 \\ 4.0 \end{array}$
CMS [298]	EM HAD	$PbWO_4$ brass/scin.	1.40	$2.8 \\ 125$	$\frac{120}{560}$	$0.3 \\ 3.0$
ATLAS [4]	EM HAD	${ m Pb/LAr}$ Fe/scin.	1.30	$\frac{10}{56}$	$245 \\ 1800$	$0.7 \\ 3.0$

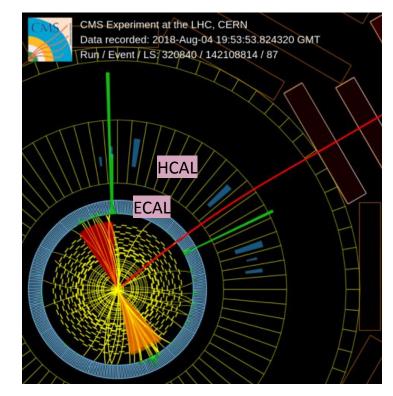
Kolanoski, Wermes 2015

Abbreviations: EM, HAD: electromagnetic, hadronic calorimeter; PWC: proportional wire chamber; LST: limited streamer tubes; LAr: liquid argon; n.s.: not specified.

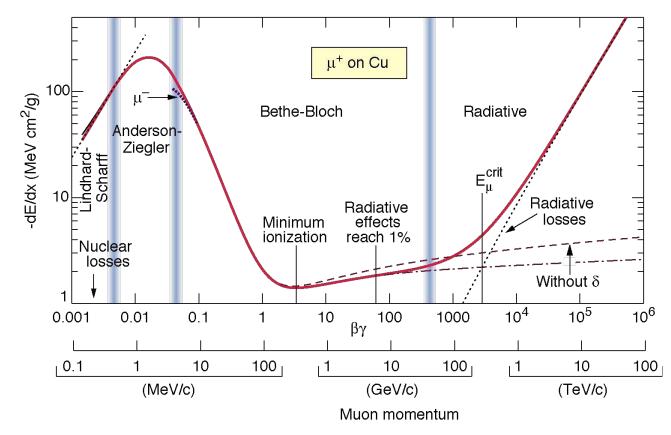
Considerations for calorimeter construction and operation



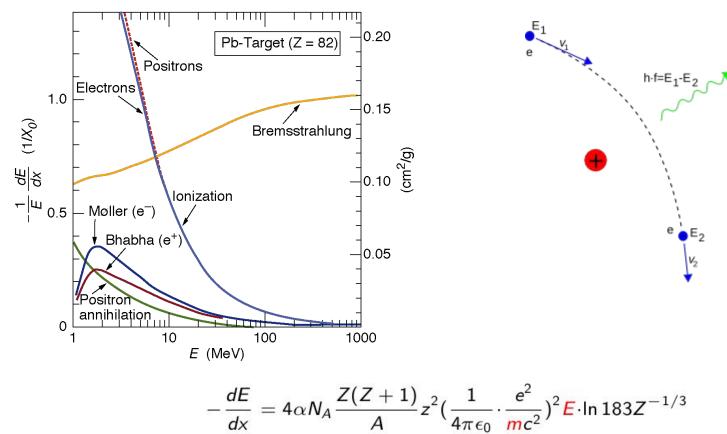
- Energy and position resolution
 - Optimised for most interesting physics processes, leading to different choices
 - Example: LHC experiments gave high importance to $H \rightarrow \gamma \gamma$ measurement of ECALs
- Longitudinal segmentation
 - Separation of electromagnetic and hadronic showers
- Tail catcher
 - Improve HCAL energy measurement in case of shower leakage
 - Can be muon chambers, active layers in return yoke of magnet
- Pre-sampler
 - Detect if shower has started before calorimeter
 - Tracker and other material can add up to few X_0
 - Important for high-energy photons with mean free path for pair production of 9/7 X_0
- Lateral structure
 - Shower separation
 - Shower direction and axis measurement
- Signal collection and time resolution
 - In view of collision rate, pile up rejection
- Calibration
- Radiation hardness

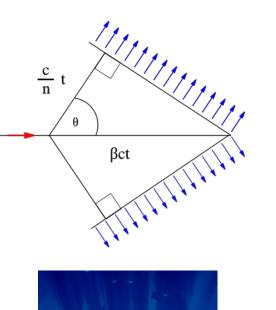

Side remark: Readout cell size

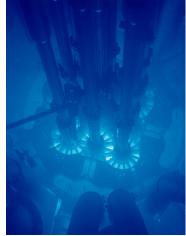
CMS: Simulated showers on top of detector concept

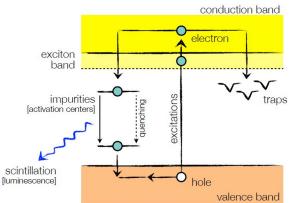


CMS: Event display indicating readout cell size

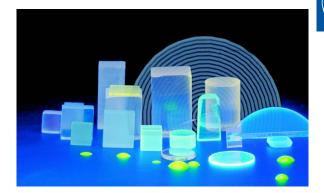

Ionisation


Bremsstrahlung



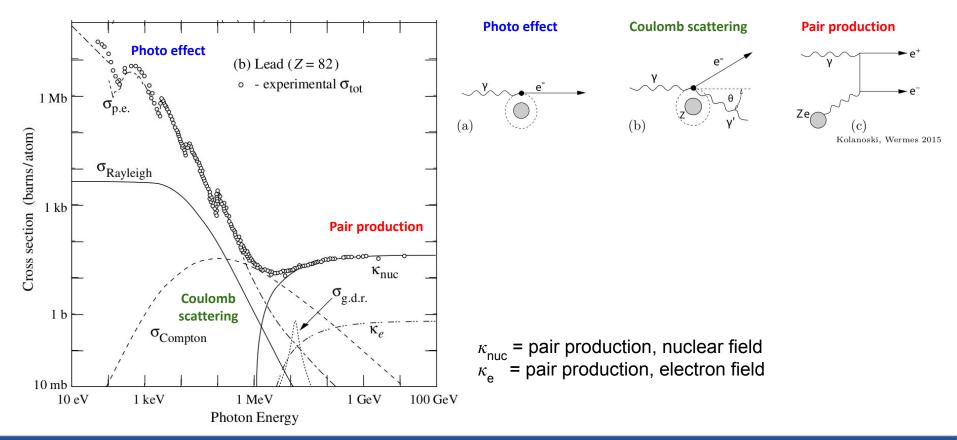

Cherenkov radiation

- Cherenkov radiation is emitted when particle velocity is larger than speed of light in the material
 - v > c/n
 - with n = refractive index of material
- Electromagnetic shock wave of conical shape
- Emission angle θ
 - $\circ \quad \cos \theta = 1/\beta n$ with $\beta = v/c$
- Contribution to energy loss 1%



Scintillation

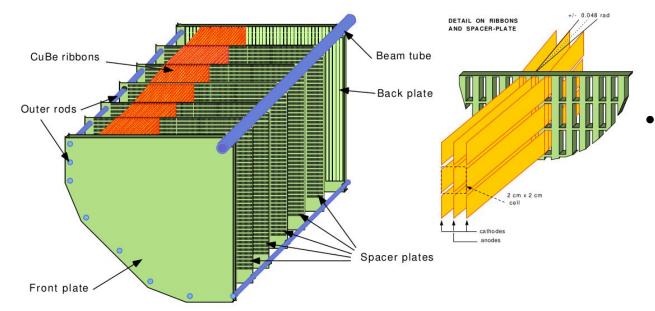
Scintillation: Emission of photons during de-excitation of atoms, typically UV to visible light


- 1. (Liquid) Noble Gases
- 2. Inorganic Crystals
 - Substances with largest light yield
 - Expensive
- 3. Polycyclic hydrocarbons (organic scintillators)
 - e.g. naphthalene, anthracene,
 - Large scale industrial production
 - mechanically and chemically quite robust

- Few % of the total energy loss converted into visible photons.
- Example: 1cm plastic scintillator, 1, dE/dx=1.5 MeV, ~15 keV in photons; i.e. ~ 15 000 photons produced.

Excursion: Photon interactions with matter

Liquid noble gases used in calorimeters

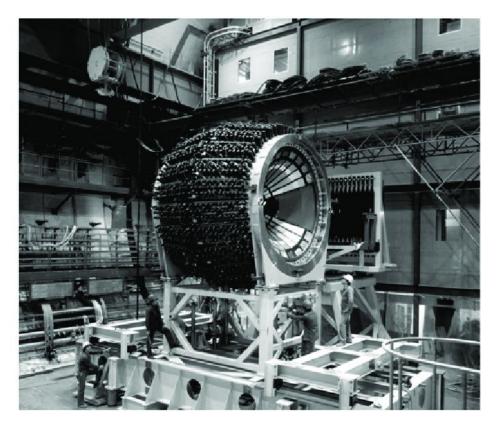

		_	
	Ar	Kr	Xe
Z	18	36	58
Α	40	84	131
X_0 (cm)	14	4.7	2.8
R_M (cm)	7.2	4.7	4.2
Density (g/cm ³)	1.4	2.5	3.0
Ionization energy (eV/pair)	23.3	20.5	15.6
Critical energy ϵ (MeV)	41.7	21.5	14.5
Drift velocity at saturation $(mm/\mu s)$	10	5	3

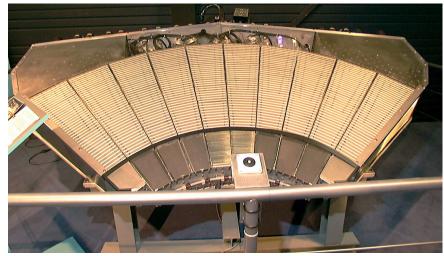
- Energy loss of charged particles
 - Half via ionisation
 - Half via scintillation
- Best energy resolution would be reached when collecting both charge and light signal, but rarely done due to complex technical implementation

- Liquid noble gases with high-Z: Liquid Krypton and Xenon
 - Small radiation length and Molière radius
 - \circ Can serve both as converters and as active media \rightarrow Application in homogenous calorimeters
- Liquid Argon common as active medium in sampling calorimeters

Homogeneous calorimeters: Liquid Noble Gas

Typical resolutions:


$$\frac{\sigma_E}{E} \approx \frac{(3\text{--}5)\%}{\sqrt{E/\text{GeV}}}$$


Liquid Krypton calorimeter of NA48 (later re-used in NA62)

- Quasi-homogeneous ionisation calorimeter, 27 X₀
- Filled with 10 m³ of liquid krypton as active medium and absorber
- Ionisation charges collected on thin electrodes: Copper-Beryllium ribbons
- Shower sampling with high granularity and hence high position resolution
- Combines the advantages of a homogeneous calorimeter with those of a sampling calorimeter

Sampling calorimeters: Example UA2 @ SppS

- Built in orange-like structure with 24 slices
- Active layers:
 - Plastic scintillator + light guides
- Absorber
 - Inner part: lead absorber
 - Outer part: Iron absorber