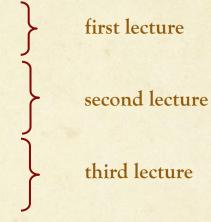


Institut Phyliciplinaire Hubert CURREN (1) and at Min 2 min (baudot@in2p3.fr)

Lecture outline

- 1. Basic concepts
- 2. Finding algorithms
- 3. Fitting algorithms
- 4. Existing tracking systems
- References



EURIZON 2023 - Tracking - J.Baudot

- O Local method
- O Global method
- O Methods based on machine learning

FINDING : 2 strategies

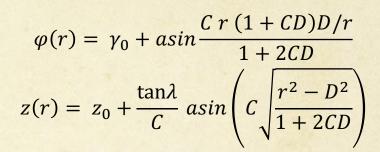
• Global methods

- Transform the coordinate space into pattern space
 - "pattern" = parameters used in track model
- Identify the "best" solutions in the new phase space
- → Use all points at a time
 - No history effect
- Well adapted to evenly distributed points with same accuracy
- O Local methods
 - Start with a track seed = restricted set of points
 - Could require good accuracy from the beginning
 - Then extrapolate to next layer-point
 - And so on...iterative procedure
 - "Wrong" solutions discarded at each iteration
 - Possibly sensitive to "starting point"
 - Well adapted to redundant information

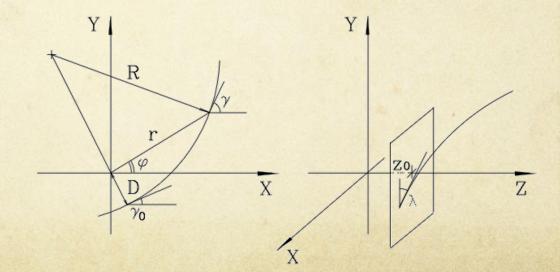
FINDING drives tracking efficiency fake track rate

- A simple example
 - Straight line in 2D: model is $x = a^{*}z + b$
 - Track parameters (a,b); N measurements x_i at z_i (i=1..N)
- A more complex example
 - Helix in 3D with magnetic field
 - Track parameters (γ_0 , z_0 , D, $tan\lambda$, C=R)
 - Measurements/point (r, φ , z)

- Parameters: P-vector p
- Measurements: N-vector c
- Model: function f (\mathcal{R}^{P} + \mathcal{R}^{N})



Track model



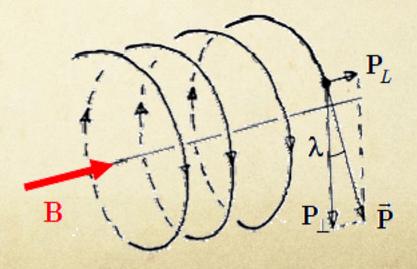
Helix model

- Another view of the helix
 - \rightarrow s = track length
 - \rightarrow h = rotation direction
 - λ = dip angle
 - → Pivot point (s=0):
 - position (x_0, y_0, z_0)
 - orientation ϕ_0

$$x(s) = x_o + R \left[\cos \left(\Phi_o + \frac{hs \cos \lambda}{R} \right) - \cos \Phi_o \right]$$

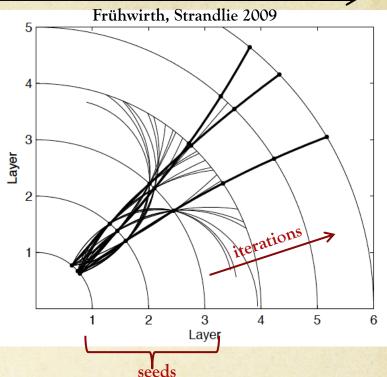
$$y(s) = y_o + R \left[\sin \left(\Phi_o + \frac{hs \cos \lambda}{R} \right) - \sin \Phi_o \right]$$

$$z(s) = z_o + s \sin \lambda$$



Local method 1/3

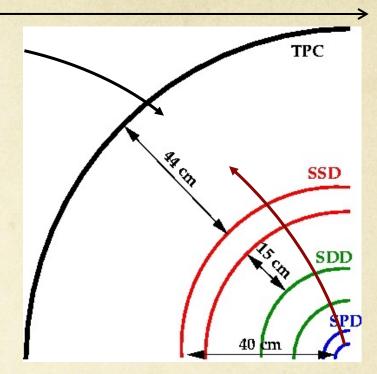
- Track seed = initial segment
 - Made of few (2 to 4) points
 - One point could be the expected primary vtx
 - Allows to initialize parameter for track model
 - Choose <u>most precise</u> layers first
 - usually inner layers
 - But if high hit density
 - Start farther from primary interaction
 <u>a lowest density</u>
 - Limit mixing points from different tracks
- Extrapolation step
 - Out or inward (=toward primary vtx) onto the next layer
 - Not necessarily very precise, especially only local model needed
 - Extrapolation uncertainty ≤ layer point uncertainty
 - Computation speed important
 - Match (associate) nearest point on the new layer
 - Might skip the layer if point missing
 - Might reject a point: if worst track-fit or if fits better with another track



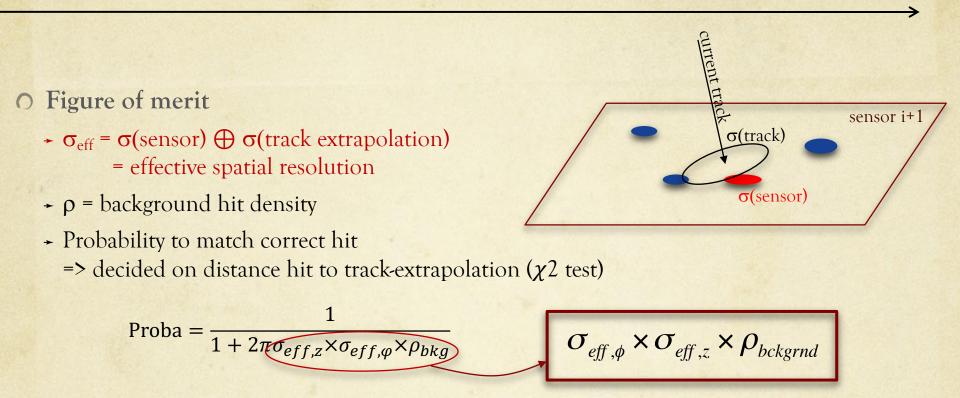
Local method 2/3

- Variant with track segments
 - First build "tracklets" on natural segments
 - Sub-detectors, or subparts with same resolution
 - Then match segments together
 - Typical application:
 - Segments large tracker (TPC) with vertex detector (Si)
 - ➤ layers dedicated to matching

 \bigcirc (Variant with Kalman filter \rightarrow See later)



Local method 3/3



• Best suited to

- Accommodate diverse extrapolation precision at each layer
 - Multi-layer system with non-equidistant & non-equivalent resolution layers
- Easy to include timing information (just sum position & time χ^2)

Interlude

O Occupancy

= segmentation area (pitch²) x $\rho_{bckgrnd}$

- Knowing that
$$\sigma_{det} = \frac{\text{pitch}}{k}$$
 with $\sqrt{12} = 3.46$
we got $\sigma_r \times \sigma_{\varphi} \times \rho_{bkgdrnd} = \frac{\text{pitch}}{k_r} \times \frac{\text{pitch}}{k_{\varphi}} \times \rho_{bkgdrnd} = \frac{\text{occupancy}}{k_r \times k_{\varphi}} < \frac{\text{occupancy}}{10}$

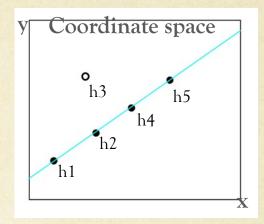
• Back to probability to match correct hit

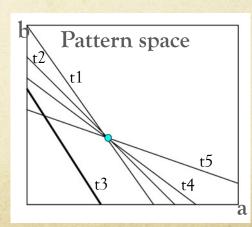
$$Proba = \frac{1}{1 + 2\pi\sigma_{eff,z} \times \sigma_{eff,\varphi} \times \rho_{bkg}} > \frac{1}{1 + 2\pi \operatorname{occupancy}}$$

occupancy	$\frac{1}{1+2\pi \text{ occupancy}}$
0.1 %	99.4%
1 %	94.1%
5%	76.1%

Global methods 1/2

- Brute force = combinatorial way
 - Consider all possible combination of points to make a track
 - Keep only those compatible with model
 - Usually too time consuming...
- Hough transform
 - Example straight track:
 - Coord. space $y = a^*x + b \iff pattern space b = y x^*a$
 - Each point (y,x) defines a line in pattern space
 - All lines, from points belonging to same straight-track, cross at same point (a,b)
 - In practice: discretize pattern space and search for maximum
 - Applicable to circle finder
 - needs two parameters as well $(r, \phi \text{ of center})$ if track is assumed to originate from (0,0)
 - More difficult for more than 2 parameters...





11

Global methods 2/2

0.1 0.2 0.3

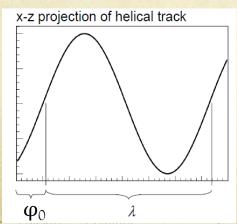
0.4

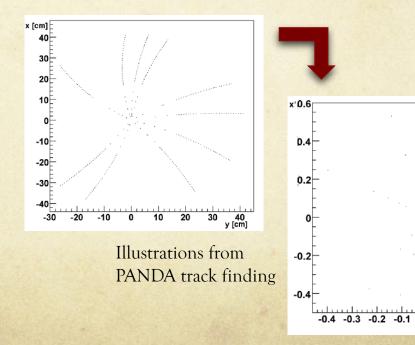
• Conformal mapping for helix

- + (x_0, y_0, z_0) a (pivot) point on the helix with (a,b) the center of the projected circle of radius r
 - $(x-a)^2 + (y-b)^2 = r^2$
- + Transforming to $x' = \frac{x x_0}{r^2}$, $y' = \frac{y y_0}{r^2}$ leads to $y' = -\frac{a}{b}x' + \frac{1}{2b}$ i.e. a line!
 - So all measured points (x,y) in circles are aligned in (x',y') plane
- Use Hough transform $(x',y') \rightarrow (r,\theta)$ so that $r = x' \cos \theta + y' \sin \theta$
 - To find the lines corresponding to true circles with $a = r \cos \theta$ and $b = r \sin \theta$
- ➤ Repeat for different z₀
 - New Hough transforms
 - λ = dip angle

EURIZON 202

• ϕ_0 = orientation of pivot point





Global methods 2/2

60

 $\varphi[^{\circ}]$

70

80

Figure of merit

- Search precision in pattern space depends on bin-size in the pattern space
- Such bin-size ~ uncertainty on the measurements = $\sigma(\text{sensor}) \bigoplus \sigma(\text{multiple scatt.})$

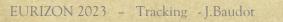
Axial $\sigma_{eff,\phi} \times \sigma_{eff,z} \times \rho_{bckgrnd}$ $\varphi = 51.5^{\circ} \ p_T^{-1} = -0.14 \ \text{GeV}^{-1} \ \vartheta = 57.4^{\circ}$ true • pred $\varphi = 52.0^{\circ} p_T^{-1} = -0.21 \, \text{GeV}^{-1}$ -2-1O Best suited for PT [GeV-1] Homogenous set of measurements - Typically large gas volume or multi equidistant equivalent layers 10 40 50

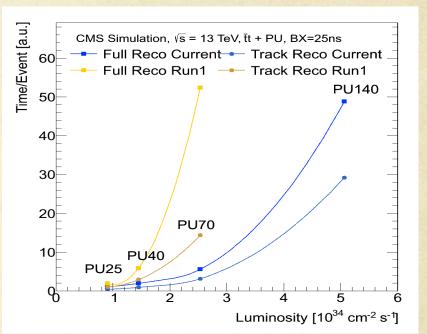
20

30

Adaptive (machine learning) methods

- Shall we do better?
 - + Higher track/vertex density => lower efficient for classical methods + Processing intensive
 - Allows for many options and best choice
- O Adaptive features
 - Dynamic change of track parameters during finding/fitting
 - Measurements are weighted / uncertainties
 - Allows to take into account many info
 - Many hypothesis are handled simultaneously
 - But their number decrease with iterations (annealing like behavior)
 - Non-linearity
 - Effective with respect to processing time
- O Examples
 - Neural network (NN), Elastic nets, Gaussian-sum filters, Deterministic annealing, Cellular automaton, convolutional NN, graph NN

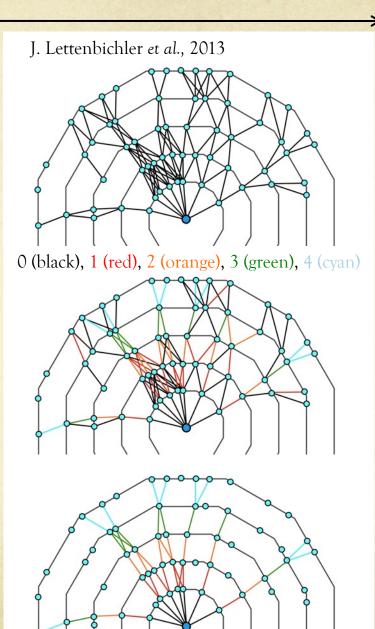




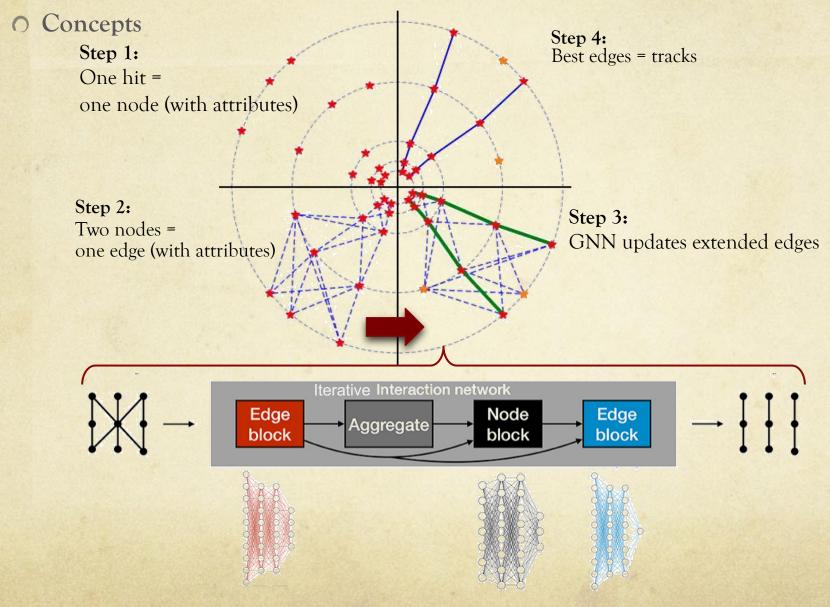
Cellular automaton

O Concepts

- ➤ Initialization
 - Build all 'possible' cell (= segment of 2 points)
 - With rule(s) like:
 - 2 points belonging to same detector 'sector'
- ➤ Iterative step
 - Associate neighbour cells (inner-wise here =>)
 - following rule(s) like:
 the two cells math the track model
 - Rise "state" with associated cells
 - Kill lowest state cells
 - need a cut on the minimal accepted state
- O Usage
 - For full tracking or seeding



Graph neural network (GNN)



- O Least square method (global)
- Kalman filter (local)
- O Alignment

FITTING

- Why do we need to fit?
 - ➤ Measurement error
 - Multiple scattering error
- O Global fit
 - Assume knowledge of:
 - all track points
 - full correlation matrix
 - \rightarrow difficult if $\sigma_{\text{mult. scatt.}} \gtrsim \sigma_{\text{meas.}}$
 - → Least square method
- O Iterative (local) fit
 - ➤ Iterative process:
 - points included in the fit one by one
 - could be merged with finder step
 - → Kalman filter

FITTING drives track extrapolation & momentum res.

Nb of measured points to start?

O The rule

- For the fit: nb of constraints > nb of free parameters in the track model
- Measurements
 - → 1 point in 2D = 1 constraint ($x \leftrightarrow y$) or ($r \leftrightarrow \phi$)
 - + 1 point in 3D = 2 constraints ($x \leftrightarrow z \& y \leftrightarrow z$)

O Models

- Straight track in 2D = 2 parameters
 - 1 coordinate @ origin (z=0), 1 slope
- Straight track in 3D = 4 parameters
 - 2 coordinates @ origin, 2 slopes
- Circle in 2D = 3 parameters
 - 2 coordinates for center, 1 radius
- Helix in 3D = 5 parameters
 - 3 coordinates for center, 1 radius, 1 dip angle

O Minimal #points needed

- $\Leftarrow 2$ points in 2D
- $\Leftarrow 2$ points in 3D
- \Leftarrow 3 points in 2D
- \Leftarrow 3 points in 3D

Least Square Method (LSM)

- O Linear model hypothesis
 - P track parameters p, with N measurements c

$$\vec{c} = \vec{c}_s + A(\vec{p} - \vec{p}_s) + \vec{\varepsilon}$$

+ p_s = known starting point (pivot), A = track model NxP matrix, $\boldsymbol{\varepsilon}$ = error vector corresponding to V = covariance NxN matrix

• Sum of squares:

 $\sum \frac{(\text{model} - \text{measure})^2}{\text{uncertainty}^2}$

$$S(\vec{p}) = (\vec{c}_s + A(\vec{p} - \vec{p}_s) - \vec{c})^T V^{-1} (\vec{c}_s + A(\vec{p} - \vec{p}_s) - \vec{c})$$

• Best estimator (minimizing variance)

$$\frac{\mathrm{d}S}{\mathrm{d}\vec{p}}(\vec{p}) = 0 \implies \vec{p} = \vec{p}_s + \left(A^T V^{-1} A\right)^{-1} A^T V^{-1} \left(\vec{c} - \vec{c}_s\right)$$

Variance (= uncertainty) of the estimator:

$$\underline{V_{\vec{p}}} = \left(A^T V^{-1} A\right)^{-1}$$

- Estimator p follows a χ^2 law with N-P degrees of freedom

• Problem \Leftrightarrow inversion of a PxP matrix ($A^T V^1 A$)

https://genfit.sourceforge.net - But real difficulty could be computing V (NxN matrix) <= layer correlations if multiple scattering non-negligible if $\sigma_{\text{mult, scatt.}} \gtrsim \sigma_{\text{meas}}$

"N measurements" means:

- K points (or layers)
- D coordinates at each point

Generic tool for fitting:

• N = KxD

LSM on straight tracks

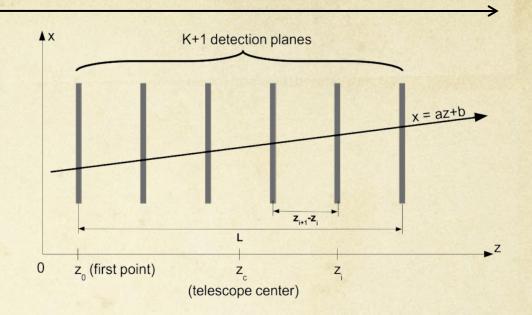
- O Straight line model
 - → 2D case → D=2 coordinates (z,x)
 - 2 parameters: a = slobe, b = intercept at z=0
- O General case
 - K+1 detection planes (i=0...k)
 - located at z_i
 - Spatial resolution $\boldsymbol{\sigma}_{i}$
 - → Useful definitions

$$S_{1} = \sum_{i=0}^{K} \frac{1}{\sigma_{i}^{2}} , S_{z} = \sum_{i=0}^{K} \frac{z_{i}}{\sigma_{i}^{2}} , S_{xz} = \sum_{i=0}^{K} \frac{x_{i}z_{i}}{\sigma_{i}^{2}} , S_{z^{2}} = \sum_{i=0}^{K} \frac{z_{i}^{2}}{\sigma_{i}^{2}}$$

• Solutions
$$a = \frac{S_1 S_{xz} - S_x S_z}{S_1 S_{z^2} - (S_z)^2}$$
, $b = \frac{S_x S_{z^2} - S_z S_{xz}}{S_1 S_{z^2} - (S_z)^2}$

• Uncertainties

$$\sigma_a^2 = \frac{S_1}{S_1 S_{z^2} - (S_z)^2}, \quad \sigma_b^2 = \frac{S_{z^2}}{S_1 S_{z^2} - (S_z)^2}$$
! correlation $cov_{a,b} = \frac{-S_z}{S_1 S_{z^2} - (S_z)^2}$



- Case of uniformly distributed (K+1) planes
 - $+ z_{i+1} z_i = L/K \text{ et } σ_i = σ ∀i$
 - + $S_z = 0 \rightarrow a, b$ uncorrelated

$$\sigma_a^2 = \frac{12K}{(K+2)L^2} \frac{\sigma^2}{K+1} , \ \sigma_b^2 = \left(1 + 12\frac{K}{K+2}\frac{z_c^2}{L^2}\right) \frac{\sigma^2}{K+1}$$

- ➤ Uncertainties :
 - $\boldsymbol{\sigma}_{a}$ and $\boldsymbol{\sigma}_{b}$ improve with $1/\sqrt{(K+1)}$
 - $\boldsymbol{\sigma}_{a}$ and $\boldsymbol{\sigma}_{b}$ improve with 1/L
 - $\boldsymbol{\sigma}_{\rm b}$ improve with $z_{\rm c}$

LSM on fixed target geometry

K/4 det.

• Hypothesis

- K detectors,
 each with σ single point accuracy
- Uniform field over L from dipole
 - Trajectory: $\Delta \alpha = \frac{0.3qBL}{p}$
 - Bending: $\Delta p = p \Delta \alpha$
- Geometrical arrangement optimized for resolution
 - Angular determination on input and output angle:

$$\sigma_{\alpha}^2 = \frac{16 \sigma^2}{K l^2}$$

B

K/4 det.

P

O Without multiple scattering

- Uncertainty on momentum
- Note proportionality to p and to $\frac{1}{BL}$
- O Multiple scattering contribution
 - Bring additive term proportional to K

and $\sigma_{\theta} = \frac{13.6 \text{ (MeV/c)}}{\beta p} \sqrt{\frac{\text{thickness}}{X_0}}$

EURIZON 2023 - Tracking - J.Baudot

 $\frac{\sigma_p}{p} = \frac{8}{0.3q} \frac{1}{BL} \frac{\sigma}{l\sqrt{K}} p$

$$\frac{\sigma_p}{p}(ms) = A_K \frac{13.6 \text{ (MeV/c)}}{\beta} \sqrt{\frac{\text{total thickness}}{X_0}}$$

=> Constant with p!

 A_K = factor depending on geometrical arrangement

K/4 det.

K/4 det.

Δα

Pout

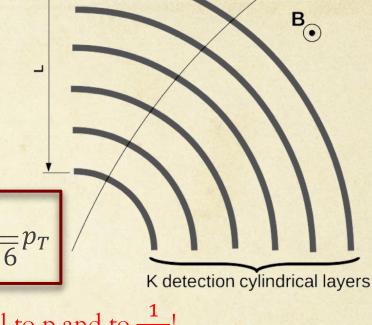
LSM on collider geometry

- O Hypothesis
 - K detectors uniformly distributed each with σ single point accuracy
 - Uniform field over path length L
- Without multiple scattering
 - Uncertainty on transverse momentum (Glückstern formula)

$$\frac{\sigma_{p_T}}{p_T} = \frac{\sqrt{720}}{0.3q} \frac{1}{BL^2} \frac{\sigma}{\sqrt{K+6}} p_T$$

Works well with large K > 20

=> Proportional to p and to $\frac{1}{BL^2}!$



- O Multiple scattering contribution
 - Brings additive contribution

 $\frac{\sigma_{p_T}}{p_T} = \frac{1.43}{0.3q} \frac{1}{BL} \sqrt{\frac{13.6 \text{ (MeV/c)} \text{ total thickness}}{\beta}} \frac{X_0}{X_0}$

*Numerical factors $\sqrt{\frac{720}{K+6}}$ and 1.43 can be refined \rightarrow see <u>https://arxiv.org/abs/1805.12014</u>

=> Constant with p!=> Depends on K through total thickness!

LSM for impact parameter $(d_{r\varphi})$

\rightarrow see <u>https://arxiv.org/abs/1805.12014</u>

O Hypothesis

- K detectors uniformly distributed over L
- each with σ single point accuracy
- First layer is close to PV / L => $r = R_{int}/L < 1$

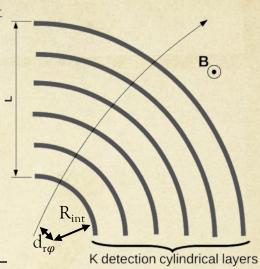
• Without multiple scattering
$$\sigma_{d_{r\varphi}} = \frac{\sqrt{3\sigma}}{\sqrt{K+4}}\sqrt{1+8r+28r^2}$$

- O Multiple scattering contribution
 - + Brings additive contribution proportional to $\sigma_{\theta} = \frac{13.6 \text{ (MeV/c)}}{\beta p_T} \left| \frac{\text{thickness}}{X_0} \right|$

$$\sigma_{d_{r\varphi}}(ms) = r\sigma_{\theta} \sqrt{1 + \frac{1}{2}r + \frac{K-1}{4}r^2} \implies \text{Proportional to r and K!}$$

O Key points

- Minimising $R_{int}/L \leftrightarrow$ getting close & keeping lever arm
- Multiple scattering destroys statistical gain of K>2



Kalman filter 1/2

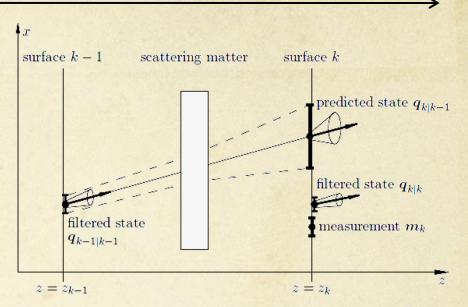
Dimensions

- P parameters for track model
- + D "coordinates" measured at each point (usually D<P)
- K measurement points (# total measures: N = KxD)
- Starting point 0
 - Initial set of parameters: first measurements
 - With large uncertainties if unknowns
- Iterative method
 - Propagate to next layer = prediction
 - Using the system equation
- $\vec{p}_k = G \vec{p}_{k-1} + \vec{\omega}_k$
- G = PxP matrix, $\omega =$ perturbation associated with covariance PxP matrix V_{ω}
- Update the covariance matrix with additional uncertainties (ex: material budget between layers)
- Add new point to update parameters and covari
 - H=DxP matrix, $\varepsilon=$ measure error associated v
 - Weighted means of prediction and measurem
- + Iterate...

and covariance, using the measure equation
$$\vec{m}_k = H \vec{p}_k + \vec{\varepsilon}_k$$

ssociated with diagonal covariance DxD matrix V_m
measurement using variance $\Leftrightarrow \chi^2$ fit
 $\vec{p}_k = \left(V_{k|k-1}^{-1} \vec{p}_{k|k-1} + H^T V_{m_k}^{-1} \vec{m}_k\right) \cdot \left(V_{k|k-1}^{-1} + H^T V_{m_k}^{-1} H\right)^{-1}$

 $V_{k|k-1} = V_{k-1} + V_{\omega_k}$



EURIZON 2023 - Tracking - J.Baudot

Kalman filter 2/2

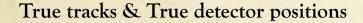
- Forward and backward filters
 - Forward estimate of p_k : from 1 + k-1 measurements
 - Backward estimate of p_k : from k+1+K measurements
 - → Independent estimates → combination with weighted mean = smoother step
- O Computation complexity
 - only PxP, DxP or DxD matrices computation («NxN)
- Mixing with finder
 - After propagation step: local finder
 - Some points can be discarded if considered as outliers in the fit (use χ^2 value)
- O Include exogenous measurements
 - Like dE/dx, correlated to momentum
 - Additional measurement equation

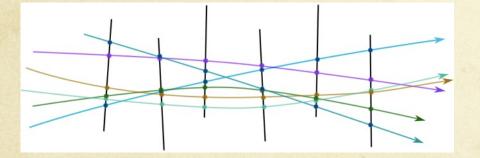
 $\vec{m}'_k = H' \vec{p}_k + \vec{\varepsilon}'_k$

 $\vec{p}_{k} = \left(V_{k|k-1}^{-1}\vec{p}_{k|k-1} + H^{T}V_{m_{k}}^{-1}\vec{m}_{k} + H^{T}V_{m_{k}'}^{-1}\vec{m}_{k}'\right) \cdot \left(V_{k|k-1}^{-1} + H^{T}V_{m_{k}}^{-1}H + H^{T}V_{m_{k}'}^{-1}H'\right)^{-1}$

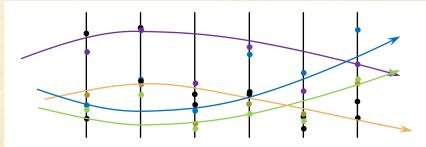
EURIZON 2023 - Tracking - J.Baudot

- O Let's come back to one initial & implicit hypothesis
 - "We know were the point are located."
 - True to the extent we know were the detector is!
 - BUT, mechanical instability (magnetic field, temperature, air flow...) and also drift speed variation (temperature, pressure, field inhomogeneity...) limit our knowledge
 - Periodic determination of positions and deformations needed = alignment





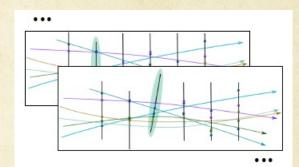
Initial assumption for detector positions & tracks built from these assumptions



Note hit position relative to detector <u>are the same</u> tracks reconstructed are not even close to reality... and this assuming hits can be properly associated together!

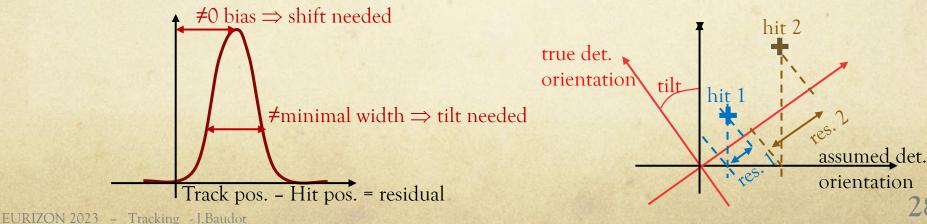
Alignment strategy 1/2

- Alignment parameters
 - + Track model depends on additional "free" parameters, i.e. the sensor positions
- Methods to find the relative position of individual sensors
 - Global alignment:
 - Fit the new params. to minimize the overall χ^2 of a set of tracks
 - Beware: many parameters could be involved (few 10^3 can easily be reached) \rightarrow Millepede algo.
 - Local alignment: +
 - Use tracks reconstructed with reference detectors



 $\mathbf{28}$

Align other detectors by minimizing the "residual" (track-hit distance) width



Alignment strategy 2/2

- In both methods (global or local alignment)
 - Use a set of well know tracks and tracking-"friendly" environment to avoid bias
 - Muons (very traversing) and no magnetic field
 - Low multiplicity events
- O Global deformations also possible
 - Invisible through single track χ^2 investigation
 - affect overall positions & momentum
 - Corrected through observing
 - Mass peak positions
 - Systematic differences at various track angles or detector positions

