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Q1: What is modern?
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Q2: What is calorimetry?
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outline
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○ Particle-Flow Calorimeters
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● Examples of calorimetry systems
● Calorimeter @ hadron colliders
● Upgrades for Hi-Lumi LHC
● Intensity Frontier and Trends in 
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● Outside Physics w/ Beams ?



Examples of calorimetry systems
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Lecture recap

Examples of complex calorimetry system implementations

Importance of all boundary/environmental conditions
→ calorimeters are complex systems
→ calorimetric measurements depend on full “picture”
→ can NOT optimise all parameters at same time

Search compromises driven by physics goals
(unknown → choices may be wrong)

Few implementations @ LHC and for High-Lumi LHC

Evolution toward high granularity calorimetry

Calorimeter role @ non-accelerator/collider exp.s
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past ...

LEP calorimeters:

ALEPH           em (Pb+PWC): 18% / √E + 1.9%  (~ 4 mrad / √E)
                       had (Fe+LST): 85% / √E

DELPHI          em (Pb+TPC): 23% / √E + 4.3%  (~ 5 mrad)
                       had (Fe+LST): 120% / √E

L3                   em (BGO): 2.2% / √E + 0.7% (~ 10 mrad)
                       had (U+PWC): 55% / √E

OPAL             em (lead glass): 6.3% / √E + 0.2% (~ 4.5 mrad)
                       had (Fe+LST): 120% / √E

all sampling but L3 and OPAL ECALs
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L3 HCAL

Could even be made compensating (e/h = 1)

Just by changing gas, pion 
response may ~double

Why ?
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( SAND : Signal Amplification through Neutron Detection )

Q: could be successfully exploited ?

Cons: slow response → integration of signal over large volume and long time

BGO also “slow” (decay time ~ 300 ns)                                                             

One way to compensation
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Invariant mass resolution?



Wuppertal, 19.07.2023 11

Invariant mass resolution?

needs both energy resolution and angular resolution
(for small separation angles, i.e. decays of boosted objects)



Wuppertal, 19.07.2023 12

How to design your calorimeter?

Must match physics requirements, environmental constraints, … cost:

          Objects (final states) to be identified and measured ?
          Energy resolution ?
          Spatial / angular resolution ?

   Stability and linearity ?
          Signal handling ?
          Event rate (time needed for signal production) ?          
          Data size / throughput ?
          Environment (radiation / pile-up) ?
          Monitoring and calibration ?        
          Cost / funding ?

Compromise / optimise … target physics performance
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Scintillating crystals used in EM calorimeters



Wuppertal, 19.07.2023 14

Environment ? Magnetic field ?

Photosensors behaviour in B field ?

Photomultipliers do not work in magnetic field
→ need to bring light in some more confortable place
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Photodetectors that can operate in B fields

CMS ECAL Endcap 
copper mesh anode
4 T B field operation

CMS ECAL Barrel
More cooling and new FE elx 
needed for HL-LHC

PIN Diodes
Unity Gain

Vacuum PhotoTriodes (VPTs)
Gain ~10

Avalanche PhotoDiodes (APDs)
Gain ~50
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Photodetectors that can operate in B fields

Silicon PhotoMultipliers (SiPMs)
Micro-pixel Avalanche PhotoDiodes (MAPDs)

Micro-Channel-Plate PhotoMulTipliers (MCP-PMTs)
Gain ~ 60000-106

Hybrid PhotoDiodes (HPDs)
Gain ~2000



Wuppertal, 19.07.2023 17

Environment ? Radiation ?

Damage by ionising radiation

→ caused by energy deposited in detector material: ≈ 2 MeV / g / cm2 for MIP
→ also caused by photons from EM and HAD showers
→ damage proportional to deposited energy per unit mass, or dose – unit Gy

1 Gy = 1 Joule / kg
1 Gy = 3×109 particles per cm2 of material with unit density

At LHC design luminosity, in CMS Central Barrel, ionising dose is: ~ 7500 Gy / year
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Environment ? Neutrons ?

Damage by neutrons

→ created in HAD showers, in detector material (also forward shielding and collimators)
→ bounce back and forth, energy in 0.1-20 MeV range 
→ neutron “gas” can fill up whole detector

Expected fluence: ~ 3×1013 / cm2 / year in innermost detector part (inner tracking system)
→ moderated by Hydrogen presence (e.g. in organic scintillators):

→ σ(n,H) ~ 2 barns with elastic collisions
→ mean neutron free path ~ O(1-10 cm)
→ at each collision, neutron loses ~ 50% of energy (~ 2% in iron)
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More on neutrons

can modify crystalline structure of semiconductors (independently of deposited energy)

off-the-shelf elx usually dies out for doses > 100 Gy and fluences > 1013 n / cm2

→ need rad-hard elx (especially deep-submicron)
→ can survive up to 105-106 Gy and 1015 n / cm2
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Environment ? Pile-up ?

Many (mostly uninteresting) interactions in same 
bunch crossing of hard-scattering process

Minimise impact in space and time:
→ highly granular detector
→ precise and fast response

→ large number of channels
~108 pixels, O(105) EM calo readout cells

→ ~109 pixels for Hi-Lumi LHC



Calorimeters @ hadron colliders
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Calorimeters @ hadron colliders

Tevatron: CDF, D0

LHC: Atlas, CMS, LHCb, ALICE
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Tevatron calorimeters

Designed ~40 years ago for Run 1 (1992-96)
→ optimised for Standard Model physics (top discovery)

Upgraded for Run 2 (2001-2011)

Compared to LHC, more time between crossing, no rad-hard issues
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D0 calorimeters

U/LAr EM cal (21 X0)

Cu(Fe)/LAr HCAL (7.2 λI)

~ compensating: e/h ~1
              → ~ 3.4 μs integration time

Single particle resolution (testbeam)
e: σE/E = 15% /√E + 0.3%
π: σE/E = 45% /√E + 4%
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CDF calorimeters
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LHC (big) experiments
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ATLAS calorimeters
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ATLAS Pb/LAr EM calorimeter

22 X0 (47 cm) barrel, 24 X0 endcap

Pb thickness optimised over η for energy resolution
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Accordion-shaped capton electrodes + Pb absorber
→ no azimuthal cracks

ATLAS Pb/LAr EM calorimeter
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Fast scintillator: O(10 ns) decay time
Excellent stochastic resolution
Challenge: uniformity, stability

CMS EM calorimeter
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CMS EM ResolutionC

Global constant term < 0.5%
Global constant term 0.6-0.7%

EM resolution(s)
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Atlas vs. CMS ECAL parameters
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ECAL summary

ATLAS: + (excellent) longitunal segmentation    - (good) energy resolution

CMS:    + (excellent) energy resolution               - (no) longitudinal segmentation

Signals H→γγ or H→ZZ*→4e narrower peak in CMS

          Intrinsic background from fakes smaller in ATLAS (better e/γ/π0 separation)
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Hadron calorimetry

Main drivers: jet final states, Missing ET (BSM searches)

MET: needs both precision and angular (~ 4π) coverage
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ATLAS Tile calorimeter (Barrel)

Fe/scintillator, WLS fibre readout via PMT

Cell geometry in barrel

Open circles are PMTs
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CMS HCAL

Common technology 
for Barrel (HB) and 
Endcap (HE)

Brass/scintillator, WLS fibre readout via HPD
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Atlas vs. CMS HCAL parameters
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Hadronic resolution

Atlas: σE/E ~ 50% / √E ⊕ 3%
CMS: σE/E ~ 100% / √E ⊕ 5%

→ Missing ET resolution:

Atlas: σET/ET ~  50% / √∑ET

CMS: σET/ET ~ 100% / √∑ET

However, similar performance for BSM searches (e.g. better CMS detector hermeticity)

More limitating factors to (both EM and had) energy resolution @ LHC:
a) pile-up fluctuations

                            b) inner detector material (first X0s before calorimeters)
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ALICE EMCAL and PHOS (PHOton Spectrometer)



Wuppertal, 19.07.2023 40

ALICE EMCAL and PHOS (PHOton Spectrometer)

PHOS: PbWO4 crystals
Target: measure γ, π°, η from 0.5 to 100 GeV
Energy resolution: σE/E = 3.3% / √E + 1.8% / E + 1.1%

EMCAL(DCAL): Pb-scintillator (Shashlik)
WLS fibre readout
5×5 mm2 Hamamatsu APD
Light yield: ~ 4.5 pe/MeV
Full scale energy: 250 GeV
Lateral segmentation: Δη = δφ = 0.014
Depth: 20.1 X0

Volume ratio: Pb:Scint = 1.44:1.76
Energy resolution: σE/E = 9.5% / √E + 2.9% / E + 1.4%

→ EMCAL + DCAL: 2-arm electromagnetic calorimeter (di-jet studies)
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LHCb calorimeters
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LHCb calorimeters
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EMCAL: Lead-scintillator (Shashlik)
WLS fibre readout
Hamamatsu PMTs
Light yield: ~ 3 pe/MeV
Depth: 25 X0

Energy resolution: σE/E = 9% / √E + 0.9%

HCAL: Iron-scintillator (à la Atlas) + WLS + PMTs
Light yield: 0.1 pe/MeV
Volume ratio: Fe:Scint = 16:3
Depth: 5.6 λI

Energy resolution: σE/E = 69% / √E + 9%

LHCb calorimeters
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Energy resolution of main LHC calorimeters



Upgrades for Hi-Lumi LHC
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High-Lumi LHC

• huge radiation environment: ~1016 n/cm2 , ~1 MGy
• 150-200 pileup events per bunch-crossing:

→ high-granularity 4D detector

CMS: High-Granularity Calorimeter (HGCAL) will replace all 
endcap calorimeter

HGCAL: Particle-Flow Calorimeter
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CMS Endcap Calorimeters

 HCAL Endcap 

 ECAL Endcap 

 Preshower
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Particle Flow Paradigm

   Jet energy measurement:

1) Majority of jet particles measured with high precision         
           by Trackers and ECALs:

charged tracks → Tracker
e/γ → ECAL

2) Only neutral hadrons (~ 10%) need HCAL measurement
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Particle Flow Paradigm

  Granularity more important than energy resolution

  Lateral granularity below Molière radius in ECAL and HCAL

  Small Molière radius → good two-shower separation
→ tungsten absorber (lowest X0)
→ silicon sampling elements (highest sampling density)

  Pretty complex reconstruction software

   Extensively developed and studied in past decade for Linear Collider detectors
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PFA already (significantly) used in Aleph & CMS

Both have low resolution HCALs
Simulation: jet energy resolution Data: missing energy resolution

Jet measurements in CMS greatly enhanced with  particle flow techniques
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CMS HGCAL

Three separate regions:
EE – Silicon with tungsten absorber – 28 sampling layers – 25 X0 + ~1.3 λI

FH – Silicon with steel absorber – 12 sampling layers – 3.5 λ
BH – Scintillator with steel absorber – 11 layers – 5.5 λ

Combines tracking and calorimetry to get a PFA calorimeter

Key parameters:
• 620 m2 of silicon (3 × CMS Trk)
• 6M ch, 0.5-1.1 cm2 cell size
• ~20,000 modules (8” or 2x6” sensors)
• ~100,000 front-end ASICS
• ~200 tonnes per endcap
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Testbeam results for positrons
• Stochastic term (EM resolution) ~ 22%

• Constant term ~ 0.6%

• Linearity within 3%

• Good agreement with simulation, also for angular resolution



Intensity Frontier and Trend in HEP
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Intensity Frontier

Belle II BES III

DUNE MINERvA

Mu2e

Muon g-2

...
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Calorimeters for Intensity Frontier

Belle II: CsI(Tl) crystal → 50000 pe/MeV   resolution 0.8% / √E + 1%

BES III: CsI EMC →  ~ 2.5% at 1 GeV

Mu2e: CsI, resolution <10% at 100 MeV

Muon g-2: PbF (Cherenkov → prompt signal) → ~3% / √E

MINERvA: Lead/scintillator sampling calo

DUNE: single- or dual-phase LAr TPC → LAr purity the issue



Wuppertal, 19.07.2023 56

trend in high-energy physics

a) improve granularity → critical for pile-up rejection and PFA

b) improve timing performance → critical for pile-up rejection

c) improve hadronic resolution → critical for lepton colliders

d) improve e.m. resolution → relevant for most sampling calorimeters

e) improve radiation hardness → critical for hadron colliders
…

f) low noise, low power, high speed, high throughput data processing

function of proposed implementation and scenario (facility)
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High 
Resolution

High Rate

Rad-Hard

How to cope with physics and performance requirements? 

work for you ...
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example: physics requirements @ FCC-ee

a) Jet energy (invariant mass) resolution (separate H / W / Z → 2j final states):
H→ qq → 2j
H → WW, ZZ → 4j

b) EM energy resolution (identify and measure single photons and photon pairs from π0):
H → γγ
hadronic tau final states (π0‘s)
heavy flavour physics (π0‘s)

invariant mass resolution → requires both energy and angular resolution



Wuppertal, 19.07.2023 59

Outside Physics w/ Beams ?
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                    e.g. Astroparticle and Neutrino Physics

non considering bolometers, microcalorimeters, ... , 
low-energy deposits (μeV→meV)

beams you don’t pay for ...
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Calorimetry for cosmic-ray detection

VHE gamma rays, GRBs, EASs
neutrinos from many sources (atmospheric, solar, galactic, … ,

                                                                    supernova neutrinos)

e.g.: Water Cherenkov detectors → Super(Hyper)-Kamiokande

Even absorber often (or sometimes) “for free” → can be ice, water, air

beams you don’t pay for ...
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neutrino telescopes and observatory

Water Cherenkov detectors: Antares, KM3NeT, Hyper-Kamiokande, ...

Ice Cherenkov detectors: Amanda, IceCube

Liquid scintillator: Juno

 

… pretty long list … 

In most (almost all) cases, arrays of PMTs used to detect Cherenkov or scintillating light



Wuppertal, 19.07.2023 63

Air shower detectors

Air shower (Cherenkov) detectors: Pierre Auger 
Observatory (Surface Detector)

Pierre Auger Observatory made of two components:

Surface Detectors: 1600 stations (water tanks) 
each hosting 3 large PMTs for detection of Cherenkov 
light emission in water by highly relativistic particles

Fluorescence Detectors: 27 atmospheric 
telescopes observing ultraviolet light emitted high in 
atmosphere, using mirrors and PMTs (440 PMTs) 
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Calorimetry in space

AMS @ ISS
search for anti-matter and dark matter 

through precision measurements of flux and 
composition of primary cosmic rays
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AMS detector
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AMS ECAL

3D imaging capability

multilayer sandwich of lead foils and
(50,000) scintillating fibres, read out 
by 324 PMTs

depth ~17 X0

9 alternate superlayers with fibers 
parallel to x and y axes

Key detector for measurements of 
electrons and positrons 
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Lecture recap

Lessons from past:

a) Importance of all boundary/environmental conditions

→ calorimeters are complex systems
→ calorimetric measurements depend on full “picture”
→ can NOT optimise all parameters at same time

Search compromises driven by physics goals
(unknown → actual choice may be wrong)

b) Game changer: from integral (global) to differential (local) measurements

→ high granularity, high timing precision keywords for future detectors
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backup
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ECAL examples (from Eva’s slides)
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HCAL examples (from Eva’s slides)
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ECAL+HCAL systems (from Eva’s slides)
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