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Recap:
Segmented Silicon Detectors
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Diode, Strip & Pixel

● Simplest geometry
● No position 

measurement

● N channels
● Straight-forward 

connection to ASIC
● Problem of ghost hits

● N2 channels
● Intrinsic 2D 

measuremtent
● Issue connecting 

channels
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Spatial Resolution – Summary
● Just a single channel struck:

precision limited to variance of uniform distribution 

● Multiple channels struck (charge sharing):
interpolation using relative energy / charge distribution
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Challenges for Silicon Detectors

Material Budget

Resolution &
Granularity

Radiation Hardness

Readout Speed &
Power Consumption
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(Some) Silicon Sensor Technologies
for Vertex & Tracking Detectors

… 
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Silicon Detectors
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Silicon Detectors

Pixel Detectors Strip Detectors
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Silicon Strip Detectors
● 1D segmentation of electrodes
● Electronics adjacent to sensor
● Connection via wirebonds

● Used for large-area instrumentation:
Large radii from interaction point,
large lever arm for momentum 
measurements
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Strips (metalised)
Bond pads

Bond pads

Guard rings
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Detector Modules – Complex Structures
● Sensor is only one part of complex system, that contains…

• Readout ASICs

• DC-DC converters

• Optical transmitters

• Electrical interconnects / flexprints

• Mechanical support, spacers

• Thermal contacts

• … 

● Very complex to assemble at micrometer precision level!

CMS Phase 2 Tracker Upgrade
PS Module exploded view
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200 m² Silicon Strip Detector
CMS Tracking Detector Barrel
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Silicon Detectors

Hybrid Detectors

Pixel Detectors Strip Detectors
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Hybrid Pixel Detectors
● Traditional design of HEP silicon pixel 

consist of sensor and separate readout chip

• Sensor:   pn-junction

• Readout chip: front-end (amp, … )

• Connection: e.g. small solder spheres – bump bonding
● Small pixel cell sizes achieved, ~ 25 m μ –  often limited by interconnects

Relatively high material budget
Interconnects: cost-driver,
limits pixel pitch & thickness (stability)

Established mixed-mode CMOS
Complex circuits possible
Small technology nodes available
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Hybrid Silicon Pixel Detector
100 m Timepix on 100 μ mμ  Sensor
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Silicon Detectors

Hybrid Detectors

Pixel Detectors Strip Detectors

Bump Bonds Capacitive GlueACF
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Hybridization: Bump Bond Interconnects
● Different technologies available
● Very common: Bump bonding

• Size: ~ 20 μm
• Material: Lead-Tin, Indium, …

● Different placement techniques
● Solder spheres → individual chips
● Via lithography → wafer-level

Sensor

CLICpix2 ASIC
https://doi.org/10.1088/1748-0221/14/06/C06003

https://doi.org/10.1088/1748-0221/14/06/C06003
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Hybridization: Anisotropic Conductive Film
● Alternative to traditional solder-bump bonding
● Adhesive film with conductive micro-particles

• Stochastically distributed in film

• Some spheres end up under bond pads, get deformed, establish contact

● Widely used in display industry in one dimension, challenge: 2D distribution

● Requires careful optimization of
• Film thickness

• # spheres/area

• Bonding force…

● Currently in R&D phase

 ~20μm 

SEM cross-section measurement

Microscope image
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Hybridization: Capacitive Coupling
● Combination of “traditional” readout chip

and active sensor
● Only analog part (amplification) in sensor

● Advantages:
• Large signal from amplifier

while rather simple circuitry in sensor

• Can use full feature set of readout chip CMOS process

● Challenges:
• Gluing requires precise alignment

• Main influence: distance – good uniformity required

• Requires connecting & powering two chips

CLICpix2 + C3PD

25 mμ
CLICpix2

C3PD
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Silicon Detectors

Hybrid Detectors

Planar Sensors

Pixel Detectors Strip Detectors

Bump Bonds Capacitive GlueACF
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Planar Silicon Sensors

● Asymmetric pn-junctions, here: p-in-n

● Lightly doped n bulk sensor material
● Thin, highly-doped p implant
● Segmentation of implant: separate channels
● Backside: layer of highly doped n+ as ohmic contact

✔ Straight-forward production,
Well-studied sensor designs

✔ 100% “fill factor” / fully efficient

✗ Long drift times lead to charge loss after irradiation
H. Spieler

typical doping (p-in-n sensor):
NA ≈ 1015 cm-3

ND ≈ 1012 cm-3
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Example: CMS Pixel Detector

HDI (High Density Interconnect,
signal and power handling)

n+-in-n silicon sensor

16 readout chips, bump 
bonded to sensor

Base strips for mounting

Twisted pair cable • Sensor:
– n+-in-n sensor technology
– 285 μm thickness
– 150 x 100 μm pitch

• Module:
– 52 x 80 = 4160 pixels/chip
– 16 chips → 4160 x 16 

= 66560 pixels/module
– Total size: 64.8 x 16.2 mm
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Example: CMS Pixel Detector

HDI (High Density Interconnect,
signal and power handling)

n+-in-n silicon sensor

16 readout chips, bump 
bonded to sensor

Base strips for mounting

Twisted pair cable • Sensor:
– n+-in-n sensor technology
– 285 um thickness
– 150 x 100 μm pitch
– 52 x 80 = 4160 pixels/ROC
– 16 ROCs → 4160 x 16 = 

66560 pixels/module
– Total size: 64.8 x 16.2 mm
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Example: CMS Pixel Detector

● Innermost part of the CMS Detector
• Four barrel layers

● Radii: 3.0, 6.8, 10.2, 16.0 cm
● Length: 54.9 cm

• Three endcap layers per side
● Radii: 4.5 – 16.1 cm

● Total number of modules: 1856
● 124 MPix – with 25 ns time resolution
● Spatial resolution: > 5 mμ
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Installation of the Phase I Pixel Detector
CMS Experiment @ LHC
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Endcap and Halfbarrel
CMS Phase I Pixel DeteCtor
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Silicon Detectors

Hybrid Detectors

Planar Sensors

3D Sensors

Pixel Detectors Strip Detectors

Bump Bonds Capacitive GlueACF
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3D Silicon Sensors

● p- and n-implants implemented as columns
● Vertical implants: horizontal pn-junction
● Electric field forms horizontally between

columns

✔ Short drift time → fast!

✔ High radiation tolerance

✗ High production costs & time

✗ Inefficiencies at vertical incidence
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3D Silicon Sensors: Production
● DRIE (Deep Reactive Ion Etching): used in industry for MEMS, TSVs, …
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surface preparation Lithography, DRIE etching Polysilicon filling & doping

Lithography, n+ (surface) doping Repeat for p columns... Standard surface processing

https://iopscience.iop.org/article/10.1088/1748-0221/17/08/P08003
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Example: ATLAS ITk 3D Pixel Sensors
● Sensor for new inner tracker of ATLAS experiment
● 3D sensors for innermost layer of pixel detector

• Very radiation hard (short drift times)

• Different sensor layouts:
50 x 50 mμ
25 x 100 mμ

● At vertical incidence:
inefficiencies at backside columns

● Recovered even at slight inclination
https://doi.org/10.3389/fphy.2021.624668

https://doi.org/10.3389/fphy.2021.624668


19/07/2023S. Spannagel - EURIZON Detector School - Silicon Detectors III31

Silicon Detectors

Hybrid Detectors

Planar Sensors

3D Sensors

ELADs

Pixel Detectors Strip Detectors

Bump Bonds Capacitive GlueACF
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Enhanced Lateral Drift Detectors
● Position resolution in thin sensors limited to 

d / √12 (almost no charge sharing)
● Concept: enhance charge sharing in

Enhanced LAteral Drift sensors (ELAD)
• Close to theoretical optimum: linear charge sharing

• Deep implants to alter field, improve resolution

• Lateral spread of charges during drift

● Challenges:
• Complex production process:

epi-growth / implant / epi-growth / implant ...

• Low-field regions (recombination)
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Silicon Detectors

Hybrid Detectors

Planar Sensors

LGADs

3D Sensors

ELADs

Pixel Detectors Strip Detectors

Bump Bonds Capacitive GlueACF
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Low Gain Avalanche Diodes (LGADs)
● High electric fields: secondary ionization by charge carriers becomes possible → Impact Ionization

 – Similar to charge multiplication in gaseous detectors 
● High electric fields in small sensor volume fraction generated via thin doping layer

● Different types of LGADs: pads, iLGADs, TI-LGADs, … 
● “Typical” silicon detectors: 
● LGADs (Low Gain Avalanche Diodes) / UFSDs:



19/07/2023S. Spannagel - EURIZON Detector School - Silicon Detectors III35

The ATLAS High Granularity Timing Detector
● Mitigate tracking issues from high pile-up at HL-LHC

• Required timing resolution better than 50 ps/track
• ~ 3.7 × 106 channels with 6.4 m2 area
• Radiation hardness 2.5 × 1015 Neq/cm2 and 2.0 MGy

● LGADs with dedicated readout ASIC (ALTIROC)

https://doi.org/10.1016/j.nima.2022.166628

https://doi.org/10.1016/j.nima.2022.166628
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Silicon Detectors

Hybrid Detectors Monolithic Detectors

Planar Sensors

ELADs

3D Sensors

LGADs

→ Michael’s lecture tomorrow

Pixel Detectors Strip Detectors

Bump Bonds Capacitive Glue

?

ACF
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Understanding Your Detector
...by Means of Monte Carlo Simulations

B = 3.8 T
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Monte Carlo from Start to End

Detector
Simulation

(Geant4)

Hadronization
Decay

Parton
Shower

Hard Scattering
Matrix Elements



19/07/2023S. Spannagel - EURIZON Detector School - Silicon Detectors III39

Geant4 – GEometry ANd Tracking
● Toolkit to simulate interaction of particles with matter
● Open Source project, written in C++ using Object Orientation
● Typically new feature versions are released once a year

● It is a toolkit → a collection of tools for  simulations
• Coding is always required for simulations

• There is not such concept as “Geant4 defaults”

● Learning-by-reading: examples in source code
• Basic examples:  overview of the Geant4 tools

• Extended examples: showing specific Geant4 functionalities

• Advanced Examples: Geant4 tools in real-life applications

… 

→ Lab Exercise 10
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Applications wherever particles are involved… 

ATLAS

CMSLHC / 
particle physics

Medical Physics

Satellites / 
Space
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Core Concepts of Geant4
The Basic concepts at the core of Geant4 are:

● The run represents a set of events which share a common setup:
geometry, beam type and configuration of physics processes. 

● The event represents all information (tracks, interaction) that result from one or 
more initial particles

● A process is usually a physics process - something which results from the 
interaction of a particle with an atom of the material it is crossing.

● The track represents the snapshot of the current state of simulating one particle 
track, and stores information on the particle creation

● The step represents how the current particle is being moved
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Tracking in Geant4
Following particles is done by stepping:

● Initializing of the track
● Polling of all processes (interactions) to see how far each one will occur next (free path)
● Determination of the minimum length, which is the length of the next step.

This identifies also the winning process, the one which occurs at the end point of the step
● Calculating amount of energy lost along the length of the step
● Calling of the winning process to obtain results of the interaction

including change in energy, momentum direction, new particles created, … 
● Determination of volume the track enters

next at the end of a step (if on boundary)

step

boundary
pre-step

post-step

Volume 1 Volume 2
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Example: Visualization of Geant4 Tracking
● Seven silicon detectors

in a Pion beam

● Particle types by color:
• Blue: Pions

• Red: Electrons

• Green: Gammas

● Scattering,
secondary particle creation
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Monte Carlo from Start to End

Hadronization
Decay

Detector
Simulation

Tracking
(Geant4)

Parton
Shower

Hard Scattering
Matrix Elements

Signal
Formation

Signal
Processing

Digitization
Readout

… 011101001

e-
e-

e-e-

e-

e-

e-e-

e-

h
h hh

h

h
hh

h
h

e-

x

t



19/07/2023S. Spannagel - EURIZON Detector School - Silicon Detectors III45

O(1) – Projecting Charge Carriers
● With linear electric field, calculate approximate total drift time

via analytical approximation of mobility integral
● For each (group of) charge carrier,

• Calculate total drift time

• Calculate total diffusion offset for this time

• Put charge carrier on sensor surface,
with offset drawn from Gaussian distribution of width σx

● Very fast simulation, few calculations
● Only works for linear electric field approximations

(reasonable for many thick planar sensors) and without magnetic field

e-

t=∫ 1v ds≈
1
μ0 [

ln (E(s))
k

+ s
Ec

]
a

b

e-

E ( s)=ks+E0
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O(N) – Integration of Equations of Motion
● Successive integration of charge carrier motion
● Take each (group of) charge carrier

• Calculate mobility µ from local electric (and magnetic) field
(e.g. using Jacoboni/Canali parametrization)

• Calculate velocity

• Make step, add diffusion offset from Gaussian distribution

• Repeat N times until sensor surface is reached

● Using 4th order Runge-Kutta-Fehlberg method
• Adaptive step size according to position uncertainty (embedded 5th order)

• Method allows description of drift in complex field configurations

e-

σ x=√ 2k bTe μ t

μ=
vm
Ec

1
(1+(E /Ec)

β)1/β

e-
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O(2xNxM) – Induced Signal at Electrodes
● Successive integration of motion, calculating induced charge per step
● Take each (group of) charge carrier

• Calculate mobility & velocity from local fields

• Make step, add diffusion offset from Gaussian distribution

• Get induced charge from weighting potential difference for M neighbors

• Repeat N times until sensor surface is reached

● Allows time-resolved simulation
• Requires weighting potential, might not be trivial to obtain

● Time consuming: 
• Calculation for all neighboring electrodes for every step

• Requires propagating both electrons and holes (x2)

e-

h
Qn
ind . = ∫t n−1

t n
I n
ind .dt = q [ϕ(X n)−ϕ(xn−1)]
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■ electrons
■ holes
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