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A simple scintillator?

Optical coupling

Quantum efficency

Spectral response

Gain
Noise

HV stability

Longevity in air

Afterpulsing

Light output

Wavelength shifting

Radiation damage

Energy resolution

Absorption at edges

Speed

Magnetic field
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Path of the signal

Energy  
Deposition  
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generation   Conversion
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Read-out systems

 Specialised setup for each kind of detector
 Can be “as simple” as a NIM crate
 Most likely not as performant as 

final detector readout
 Often combination of ASIC + custom board

➔ Limits in capabilities

➔ Abstraction of information
➔ Has to be understood and calibrated well to 

interpret signals
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Analogue chain

First step: Amplification
 Most sensitive part of signal processing
 Sensor signals are often small

➔ Significant amplification at low noise
➔ Current to voltage conversion

 Characteristics usually tunable
 Gain, speed, power consumption

… and depending on external circuit
 e.g. input capacity

 Digitisation by ADCs, TDCs, sample+hold,...
➔ Usually discriminator needed

Amp

Sensor +

-

Feedback
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Analogue chain – Discriminators

 Ideally step function: Phit = 0 for Q < Q_thr   ,  P_hit = 1 for Q ≥ Q_thr

 Noise in electronic system (main contribution Gaussian)
 Equivalent Noise Charge: width of distribution 

 Step function smeared (folded with normal distribution)

 True threshold defined as 50% efficiency
 Steepness of curve indicator for amount of el. noise
 Calibration circuit / tunable source to find threshold

Threshold voltage

t

U

t

U
Discriminator

analogue digital
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Read-out electronics – calibration

Test pulse injection
 Simulation of signals from particles
 Defined signal amplitude (and shape)
 Tuning and calibration of the analogue chain
 Calibration necessary 

➔ Photon source (→ later)
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Threshold oscillations
 Digital pixel read-out chip

 Clocks present → varying power consumption

 Injection pulses are send with fixed phase to clock
 Realised that threshold varies up to 300e-

 Depends on phase of injection
 Typical thresholds: 1000 – 3000e- 

Example from CMS
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Pixel detectors

 Array of diodes
 PN junction oriented through bulk
 Operation in reverse-bias mode

 Ionising particles create electron-hole pairs
 Collection by drift in depleted area
 Otherwise diffusion

 Output signal: current pulse
 Parasitic capacitance/resistance 
 Leakage current

d∼√(ρ⋅U )

pn junction
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Pixel detectors – test setup

Similar to chip testing in industry
 Probe station with micromanipulators
 Direct sensor testing

 No direct contact to pixel

 (High voltage) power supply
 pA current meter
 LCR meter
 Fast amplifiers + Scope

A
LCR
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Pixel detectors – IV / CV curves

Leakage current measurement
 Small current in reverse biasing mode
 Umax = breakdown voltage 

➔ Exponential increase of current

 Has to be absorbed by amplifiers
 Shape of curve shows parasitic effects
 Current in bulk is temperature dependent

➔ Handle to disentangle effects
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Pixel detectors – IV / CV curves

Capacitance vs. voltage
 Diode acts like capacitor
 Capacity grows with depletion depth
 C(U) measurement → depletion voltage

 Assumption: depl. zone capacitance dominant
 Approximate input capacitance to amplifier

d∼√(ρ⋅U )depleted area

n+

p+ implant

Sensor +

-
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Source measurements

 Used for calibration and detection efficiency measurement
 Beta source: broad spectrum, deep penetration into material

 Emulates MIPs: Yt-51 max energy of beta particle: 

Enclosed
source

Detector

Trigger
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Source measurements – charge calibration

 Used for calibration and detection efficiency measurement
 Gamma source: narrow spectrum, point-like interaction
 X-ray tube: broad spectrum, can be narrowed down by fluorescence
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Source measurements – charge calibration

 Used for calibration and detection efficiency measurement
 Gamma source: narrow spectrum, point-like interaction
 X-ray tube: broad spectrum, can be narrowed down by fluorescence

➔ Record signal amplitude and identify characteristic peaks
 Alternative if tunable discriminator accessible

➔ Record integral of amplitude distribution

∂
∂Q

Threshold [a.u.]Threshold [a.u.]Threshold [a.u.]
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Signal transmission

 Cables: wave-guides with dampening and impedance
 Infinite chain of RLC elements

➔ Delays and dampening
➔ Distortion of signal
➔ Reflections
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Noise

Often one of the main challenges when designing a setup / board
 Figure of merit: Signal to Noise ratio → aim for O(10)
 Most vulnerable node: input to pre-amplifiers

Pickup noise
 Each cable, PCB trace and pin is an antenna

 Shorten, remove and shield
 Differential signalling

Few cm
to few mm
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Noise

Often one of the main challenges when designing a setup / board
 Figure of merit: Signal to Noise ratio → aim for O(10)
 Most vulnerable node: input to pre-amplifiers

Pickup noise
 Each cable, PCB trace and pin is an antenna

 Shorten, remove and shield
 Differential signalling
 Filters and ferrite rings if possible
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Noise

Often one of the main challenges when designing a setup / board
 Figure of merit: Signal to Noise ratio → aim for O(10)
 Most vulnerable node: input to pre-amplifiers

Pickup noise
 Each cable, PCB trace and pin is an antenna

 Shorten, remove and shield
 Differential signalling
 Filters and ferrite rings if possible

Electronic / thermal noise
 Electronic Noise Charge 

➔ See “Discriminators”

Further effects
 Shot noise, radioactivity, light leaks,...

CD

RS

RP
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Testbeam measurements

Test of components under realistic conditions
 Particle beam with defined properties (composition, energy, rate…)

 Usually secondary beam particles

 Dedicated beam instrumentation
 Environment close to experiment

but…
 Usually short periods of time
 Beam halls inherently (el.) noisy
 Shared beam lines
 Often not at home institute
➔ Thorough preparation vital
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Testbeam measurements

Exploration of configuration space of detectors
 Detection, particle identification, tracking... performance

… vs. powering / tuning / temperature of DUT

… vs. beam energy / composition

… vs. position on detector
 Angular scans

 Many sensors are tilted in final detector

 Simulation of operation in magnetic field
 Beam lines available all over the world with various

energies and intensities
 Next ones: Bonn and Hamburg
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Beam generation

DESY 
 Up to 7 GeV primary electron beam from DESY II
 Beam extraction via double conversion

 Bremsstrahlung via fibre target in beam orbit
 Pair production on secondary target (often copper)

 Pure e+ or e- beam with tunable energy up to 6 GeV
 Filtering by dipole magnet

 “Continuous” extraction with duty cycle depending on 
requested beam energy

 Usually only one user per beam line
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Beam generation

SPS North Area
 400 GeV p primary beam
 Slow extraction due to septum magnet

 ~5s extraction up to three times a minute
 Secondary generation through selectable target
 Mixed beam of K, π, e+/-, p or e+/--beam with tunable purity

 10 – 400 GeV
 Up to few million particles per “spill”

Extraction
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Example: SPS H8 beam line at CERN
 Usually 180 Gev/c pions
 Slow extraction over 4.8 s
 Up to three extractions per minute
 Up to O(106) particles per spill

Instrumentation
 Particle identification via Threshold 

Cherenkov detectors
 Delay Wire Chambers
 Scintillators
 Magnets for beam forming/positioning
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Threshold Cherenkov counter and CEDARs
 Cherenkov light: particle speed > speed of light in medium

 Momenta of particles in beam line similar (Δp = 1..10%)
 Gaseous detector: refractive index changes with gas type and pressure

➔ Particle types only detected for certain detector configuration
➔ Discriminate via gas type and pressure

CO2Helium

Particle identification
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Particle tracking

*

*

Device Under Test

*

* Detected track
Hit pixels

* Missed track

 Spatially resolved response of device under test (DUT) 
 Tracking of particles by beam telescopes

 Multiple position sensitive planes (often pixel or strip detectors)

 Extrapolation of track to DUT and observation of response
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Particle tracking

Delay wire chambers
 Very lightweight, sensitive area of 10x10 cm² 

covering full beam spot
 Resolution around 200 µm
 Rate limited to about 10 kHz

Silicon tracking detectors
 Lightweight, sensitive area of up to 2x2 cm² 
 Resolution < 10 µm 
 Rates up to several MHz possible
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Efficiency measurement

 Efficiency defined as fraction of detected tracks through pixel
 PDG recommendation for uncertainty

Clopper-Pearson confidence interval of 1σ
 Telescope resolution != ∞

➔ Matching radius around hit position

 Statistical uncertainty: we are aiming for ‰ accuracy 
➔ Large data set needed

 Global efficiency vs. in-cell/in-pixel efficency
 Efficiency vs. sensor bias / threshold / incidence angle

ϵ =
Nmatched

N reconstructed

1.5*LY

1.5*Lx

Ly = 
100 µm

Lx= 125 µm

Track prediction Cluster position

-40V

-80V
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Timing

 Combination of precise tracking and time of arrival (TOA) information
 Usually dedicated detectors for timing: Scintillators, MRPC
➔ Additional sources of uncertainty
➔

 Corrections for position, deposited charge, TOA necessary
 Asynchronous beam, time walk 

Beam telescope DUT

Time reference
Scintillators
Trigger/time reference

Beam
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Data taking with heterogeneous systems

 Typical system
 Reference detector: beam line instrumentation (Particle ID, energy measurement, tracker (telescope) )
 Devices under test
 Trigger devices (can be reference detector, often scintillators)

 Various detector technologies with different readout schemes
 Triggered with varying integration windows
 Shutter based
 Data driven

➔ Triggers and data streams have to be synchronised

➔ Common (high-level) data taking and 
triggering system

Detector 0

Detector 1

Detector 2
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Trigger synchronisation schemes

Scintillator

Scintillator
&

&

≥1 DUTBusy
Trg

DUTBusy
Trg

Scintillator

Scintillator
& &

DUTTrg ack
Trg in

DUTBusy
Trg

DUTBusy
Trg

DUTDUT

DUTDUTDUT
Trg

Busy
Data

TLU

DUT
Trg

Busy
Clk

Scintillator

Scintillator

 Trigger / Busy scheme
 Each DUT can veto trigger with busy
 Rate determined by slowest device
 Not robust

 Trigger / Acknowledge scheme
 DUT has no busy or misses triggers
 Use DUT as trigger filter
 Delays can become significant

 Trigger / Busy scheme with data
 Trigger ID or time stamp is sent to DUTs

 Synchronous mode
 No busy needed
 DUTs receive clock & generate timestamp/ID or receive it 

from TLU
 Trigger-less (data driven) operation possible
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Example – EUDET telescopes and ATLAS/CMS pixel devices

 MIMOSA26 based beam telescope
➔ Integration time: 115 µs (shutter based)
➔ Multiple tracks with no time stamping 

 ATLAS/CMS pixel detector: trigger based
 Window 25 … 400 ns long → fraction of tracks visible

 Trigger via scintillators or additional pixel detector
➔ Only tracks with hits on reference plane accepted
➔ Time stamping of tracks

t

Particles

Telescope
window

DUT
window

Trigger Beam telescope

Scintillators
Trigger/time reference

DUT
box

Telescope
Reference

Beam telescope

Scintillators
Trigger/time reference
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Artificial / rapid aging

 Detectors must last for years without access
 Harsh conditions: radiation, heat/cold, magnetic field

➔ Lots of redundancy and hardening

➔ Testing must identify weak points visible after years

➔ Rapid ageing

 Irradiation to end of life doses and fluences

Decreasing 
Failure 

Rate

Constant 
Failure 

Rate

Increasing 
Failure 

Rate

F
a
il
u

re
 R

a
te

Wear Out 
Failures

Early 
 "Infant 
    Mortality" 
        Failure

Constant (Random) 
Failures

Observed Failure 
Rate

Time
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Artificial / rapid aging

 Detectors must last for years without access
 Harsh conditions: radiation, heat/cold, magnetic field

➔ Lots of redundancy and hardening

➔ Testing must identify weak points visible after years

➔ Rapid ageing

 Irradiation to end of life doses and fluences
 Ionising radiation → electronics, chemical bonds
 Non-ionising radiation → crystal lattices
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Artificial / rapid aging

 Detectors must last for years without access
 Harsh conditions: radiation, heat/cold, magnetic field

➔ Lots of redundancy and hardening

➔ Testing must identify weak points visible after years

➔ Rapid ageing

 Irradiation to end of life doses and fluences
 Ionising radiation → electronics, chemical bonds
 Non-ionising radiation → crystal lattices

 Power cycling and emergency shutdowns
 Thermal cycling and extreme conditions

 Beam pipe bake-out
 Failure of cooling system
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Further techniques and info
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Pixel detectors – TCT measurements

Observation of movement of charge carriers

 Study of E-field, charge mobility, ionisation, signal formation….
 Charge injection via particles or Lasers
 Wavelength defines penetration depth

 NIR: deep penetration, MIP-like signal
 Red: shallow penetration (5-10µm)

➔ study electrons and holes individually 

OSCILLOSCOPE /

High Voltage (HV) 

WIDEBAND

AMPLIFIER
CURRENT

metallization

x

y

z

back electrode

front electrode
FAST DIGITIZER

BIAS−T

detector bulk

Laser (focusing optics)
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Pixel detectors – TCT measurements

Observation of movement of charge carriers

 Study of E-field, charge mobility, ionisation, signal formation….
 Charge injection via particles or Lasers
 Wavelength defines penetration depth

 NIR: deep penetration, MIP-like signal
 Red: shallow penetration (5-10µm)

➔ study electrons and holes individually

Inferred properties

 Induced charge:

 Full depletion voltage ~ 30V (presence of knee)

 Mobility of charge carriers: 

 Sign and the concentration of space charge 

OSCILLOSCOPE /

High Voltage (HV) 

WIDEBAND

AMPLIFIER
CURRENT

metallization

x

y

z

back electrode

front electrode
FAST DIGITIZER

BIAS−T

detector bulk

Laser (focusing optics)

l =660 nm 

depletion 

growth 

Movement of electrons

++

l=660 nm 

Movement of holes
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Pixel detectors – TCT measurements

OSCILLOSCOPE /

High Voltage (HV) 

WIDEBAND

AMPLIFIER
CURRENT

metallization

x

y

z

back electrode

front electrode
FAST DIGITIZER

BIAS−T

detector bulk

Laser (focusing optics)
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Observation of movement of charge carriers
 Charge injection via particles or Lasers
 Wavelength defines penetration depth

 FIR: silicon mostly transparent 

➔ Two-photon absorption 
 Very focussed beam →“point-like” charge deposition
 High resolution: < 2 x 2 x 20 µm³
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Spatial resolution

 Resolution derived from residuals: 
 Tricky part: disentangle tracking from intrinsic resolution

 Material and beam energy: multiple scattering

 Geometry of telescope
 Hit reconstruction from clusters 

 Extract parameters by fit of “smeared box”
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Radiation damage

Total Ionising Dose effects – Surface damage
 Creates e-h pairs in Si-SiO² interfaces

➔ Parasitic conductive channels
➔ Working points of transistors shifted
➔ Single event upsets (SEU)

Non-Ionising Energy Loss (NIEL)
 Displacement of lattice atoms

➔ Effecive doping concentration
➔ Increased leakage current
➔ Charge Trapping

z
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