

Particle Identification PID
Introduction and historical development

Mustafa Schmidt
EURIZON Detector School 2023

July 24, 2023

Particle Identities

Particles identified via lifetime, mass, charge, ...

Electron Discovery

- Example for particle identification (PID) by mass
- 1890: Arthur Schuster measuring charge-to-mass ratio
- Energy given by electric field:

$$
e E=\frac{1}{2} m v^{2}
$$

- Lorentz force resulting in centripetal force:

$$
e v B=\frac{m v^{2}}{R}
$$

- Resulting in

$$
\frac{e}{m}=1.76 \cdot 10^{11} \frac{\mathrm{C}}{\mathrm{~kg}}
$$

Electron Discovery

- Second measurement required to eliminate e (Millikan experiment in 1910)
- Electric force compensating gravitation and buoyancy:

$$
q=\frac{\left(\varrho_{o}-\varrho_{a}\right) \frac{4}{3} \pi r^{3} g d}{U}
$$

- Radius determined from falling speed of electron:

$$
r=\sqrt{\frac{9 v \eta}{2\left(\varrho_{o}-\varrho_{a}\right) g}}
$$

- Measurement results multiple of electron charge e

Proton Discovery

- 1925: Blackett's cloud chamber images show absorption of α-particles in a cloud chamber
- α-particle captured by nitrogen converting into oxygen (not carbon) and proton

$$
{ }^{14} \mathrm{~N}+\alpha \rightarrow{ }^{17} \mathrm{O}+p
$$

- Thickness and length indications for energy loss per track length $d E / d x$ and particle energy
- More detailed measurements using hydrogen in anode ray tubes \rightarrow discovery of the proton

Neutron Discovery

- 1930: James Chadwick shooting α-rays into Beryllium target \rightarrow neutral particles emitted

$$
{ }_{2}^{4} \alpha+{ }_{4}^{9} B e \rightarrow{ }_{6}^{12} C+{ }_{0}^{1} n
$$

- First thought: γ-rays emitted by beryllium (not deflected by the magnetic field and extremely penetrating)
- Unlike γ-rays not charging electroscope \rightarrow new particle
- Analyzing kinematics reveals the same mass as proton \rightarrow neutron

Pion Discovery

- Pion containing 1 up- and 1 down-quark
- Range too large (no electron)
- Scattering too large (no proton)
- Frequently captured by nuclei (no muon)
- $\pi^{ \pm}$decaying into $\mu^{ \pm}$(two-body decay \rightarrow equal kinetic energy)
- PID using tracking, energy loss, and particle decay

Cloud Chambers

- Commonly filled with isopropanol
- Thermal gradient between top and bottom
- Thin layer of saturated vapor
- Charged particle followed by condensation track

α particle

fast and slow $e^{ \pm}$

muon (MIP)

Bubble Chambers

- Studying particle physics with the Big European Bubble Chamber (BEBC)
- Installed in Proton Synchrotron at CERN in 1977
- Stainless steel vessel filled with $35 \mathrm{~m}^{3}$ superheated liquid hydrogen/deuterium
- Operating temperature: 27 K
- Operating pressure: 5 bar

Omega Baryon

- Discovery of Ω^{--}baryon in 1964 at Brookhaven National Lab (BNL) in bubble chamber:

$$
K^{-}+p \rightarrow \Omega^{-}+K^{+} K^{0}
$$

- Neutral particles not interacting with matter
- Number of bubbles per centimeter of track inversely proportional to the square of the particle velocity
- Rest mass calculated from momentum and energy of decay products

$$
m=\sqrt{E^{2}-p^{2}}
$$

Cherenkov Effect

- Cherenkov radiation: Charged particle traversing medium faster than phase speed of light in medium
- Smaller velocities: Destructive interference of waves

Cherenkov Effect

Classical analogue: boat on the water

Cherenkov Effect

- Deriving Cherenkov angle

$$
\cos \theta_{c}=\frac{v}{c} \Rightarrow \cos \theta_{c}=\frac{1}{n \beta}
$$

- Condition

$$
v>\frac{c}{n} \Rightarrow \beta=\frac{1}{n}
$$

- Using important relativistic correlation

$$
\beta=\frac{p}{E}=\frac{p}{\sqrt{p^{2}+m^{2}}}
$$

- Threshold momentum for Cherenkov radiation:

$$
p_{\mathrm{th}}=\frac{m}{\sqrt{n^{2}-1}} \approx 0.8 m
$$

Threshold Cherenkov Counters

- Maximum refractive index (derived from previous formula)

$$
n=\sqrt{\frac{m^{2}}{p^{2}}+1}
$$

- Momentum $p=12 \mathrm{GeV} / \mathrm{c}$
- $p: n>1.0035, K^{ \pm}: n>1.000843, \pi^{ \pm}: n>1.000129$
- Electrons visible in all counters
- Other Cherenkov detector concepts: DIRC, RICH

Charmonium Discovery

- First charmonium discovery of $J / \Psi(1 S)$ in 1974 with mass in $3096 \mathrm{MeV} \rightarrow$ November revolution in particle physics

Brookhaven Experiment

- Discovery of J by Samuel Ting
- Goal: finding new particles decaying into e^{+} / e^{-}and μ^{+} / μ^{-}
- Two Cherenkov threshold counters C_{0} and C_{e}
- Observed Reaction

$$
p+B e \rightarrow J+X \rightarrow e^{+}+e^{-}+X
$$

Pierre Auger Experiment

- 1,660 surface detector stations (distance $1,5000 \mathrm{~m}$)
- Diameter: 3.6 m
- Water depth: 1,2m
- Volume: $12 \mathrm{~m}^{3}$
- 3 PMTs per water tank
- Filling: highly purified water
- Detection of Cherenkov light
- Number of secondary particles depending on shower energy
- Amount of Cherenkov light proportional to number of particles

Particle Showers

Reminder:

Dominant processes at high energies ...

Photons : Pair production
Electrons: Bremsstrahlung

Pair production:

$$
\left.\begin{array}{rl}
\sigma_{\text {pair }} & \approx \frac{7}{9}\left(4 \alpha r_{e}^{2} Z^{2} \ln \frac{183}{Z^{\frac{1}{3}}}\right) \\
& =\frac{7}{9} \frac{A}{N_{A} X_{0}} \quad \text { [Xo: radiation length] } \\
\text { [in cm or g/cm }]
\end{array}\right]
$$

Absorption
coefficient:

$$
\mu=n \sigma=\rho \frac{N_{A}}{A} \cdot \sigma_{\text {pair }}=\frac{7}{9} \frac{\rho}{X_{0}}
$$

Bremsstrahlung:

$$
\frac{d E}{d x}=4 \alpha N_{A} \frac{Z^{2}}{A} r_{e}^{2} \cdot E \ln \frac{183}{Z^{\frac{1}{3}}}=\frac{E}{X_{0}}
$$

$$
\rightarrow E=E_{0} e^{-x / X_{0}}
$$

After passage of one X_{0} electron has only $(1 / \mathrm{e})^{\text {th }}$ of its primary energy ... [i.e. 37\%]

Particle Showers

Scheme of a sandwich calorimeter
Principle:
Alternating layers of absorber and active material [sandwich calorimeter]

Absorber materials:
[high density]
Iron (Fe)
Lead (Pb)
Uranium (U)
[For compensation ...]
Active materials:
Plastic scintillator
Silicon detectors
Liquid ionization chamber
Gas detectors

Electromagnetic shower

HERMES Detector

Main purpose: measuring spin structure of the nucleons

HERMES Detector

HERMES Calorimeter

- 840 identical radiation hard F101 lead-glass blocks
- Area of each block: $9 \times 9 \mathrm{~cm}^{2}$
- Length of each block: 50 cm (corresponding $18 X_{0}$)
- Block size chosen to contain 99% of EM shower inside 3×3 blocks
- Wrapped in aluminum (mirrror)
- Block length optimized to improve energy resolution
- PMTs glued to end of blocks
- Particle identification
- Muons: minimum ionizing particles
- Pions: minimum ionizing peak with long tail due to hadronic showers
- Electrons lose nearly all energy

Modern PID Motivation

- Identifying different particle species
- Long-living (but still decaying) neutral particles: Λ^{0} or $\bar{\Xi}^{0}$
- Short-living particles: τ, mesons with charm and bottom quarks
- Determination of 4-vector momentum of all decay products required to calculate the invariant mass of the original particle
- PID reduces to identify all stable particles in the final state: p, $n, K^{ \pm}, K_{L}^{0}, \pi^{ \pm}, e^{ \pm}, \mu^{ \pm}, \gamma$
- 3-momentum of particle measured: second observable required
- Total energy: $E=\gamma m_{0} c^{2}$
- Energy loss (Bethe-Bloch) $\frac{d E}{d x} \propto \frac{1}{\beta^{2}} \ln \left(\beta^{2} \gamma^{2}\right)$
- Time of Flight (ToF) $\tau \propto \frac{1}{\beta}$
- Cherenkov angle $\cos \theta=\frac{1}{n \beta}$
- Transition radiation $\gamma>1000$

Mass Reconstruction

- Typical example of reconstruction of a particle decay: $\pi^{0} \rightarrow \gamma \gamma$ (one of the first composite particles reconstructed in the LHC experiments)
- Technique also used to search for more exciting signals, like the Higgs boson (Last missing piece of the Standard Model, discovered 5 years ago at the LHC)

Recent Particle Detectors

Interaction with Matter

- Charged kaon decay visible in tracking detector via characteristic "kink"
- Sampling calorimeters (lead-scintillator) and homogenous (Lead-Tungsted) calorimeters available
- Neutrinos do not interact with matter (missing energy)
- Quark flavor tagging identifies flavor of jet responsible for jet
- Hadrons with beauty quarks having large lifetime (secondary vertex)
- K_{S}^{0} and Λ known as V^{0} particles due to characteristic decay vertices:

$$
K_{S}^{0} \rightarrow \pi^{+} \pi^{-}
$$

Separation Power

Definition of separation power:

$$
n_{\sigma}=\frac{\mu_{2}-\mu_{1}}{\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right)}
$$

Probability for misidentification:

$$
P_{\mathrm{misid}}\left(n_{\sigma}\right)=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{n_{\sigma}}{2 \cdot \sqrt{2}}\right)\right]
$$

Energy Loss

Energy loss of μ^{+}as function of its momentum

Energy Loss

- Energy Energy loss $d E / d x$ depending on particle mass
- Height of measured signal directly correlated with energy loss
- Particle identification (PID) especially for small momenta
- Smearing from detector resolution and Landu distribution

Time of Flight

- Time difference between particles

$$
\Delta t=L\left(\frac{1}{v_{1}}-\frac{1}{v_{2}}\right)=\frac{L}{c}\left(\frac{1}{\beta 1_{1}}-\frac{1}{\beta_{2}}\right)
$$

- Inserting

$$
\beta=\frac{p}{E}=\frac{p}{\sqrt{p^{2}+m^{2}}}
$$

leads to

$$
\Delta t=\frac{L}{p c^{2}}\left(E_{1}-E_{2}\right)=\frac{L}{p c^{2}}\left(\sqrt{p^{2}+m_{1}^{2}}-\sqrt{p^{2}+m_{2}^{2}}\right)
$$

- Using $E \gg m \Rightarrow E \approx m$:

$$
\Delta t=\frac{L}{2 p c^{2}}\left(m_{1}^{2}-m_{2}^{2}\right)
$$

Time of Flight

- Separating K / π at $p=1 \mathrm{GeV} / \mathrm{c}$ for $L=2 \mathrm{~m} \Rightarrow \sigma_{t} \approx 800 \mathrm{ps}$
- Error propagation

$$
\begin{aligned}
\sigma_{m^{2}} & =2\left[m^{4}\left(\frac{\sigma_{p}}{p}\right)^{2}+\right. \\
& \left.+E^{4}\left(\frac{\sigma_{t}}{t}\right)^{2}+E^{4}\left(\frac{\sigma_{L}}{L}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

- Assuming small errors in L in p :
- Mass resolution:

$$
\sigma_{m^{2}} \approx 2 E^{2} \frac{\sigma_{t}}{t}
$$

Time of Flight

- ALICE Multi Resistive Plate Chamber (Time of Flight system)
- Particle ID in high multiplicity environment \rightarrow ToF with very high granularity and coverage of full ALICE barrel
- Gas detector only choice

[^0]
Modern Cherenkov Detectors

- Required Resolution: Difference of Cherenkov angles

$$
\sigma_{\theta_{c}}=\arccos \left(\frac{\sqrt{m_{1}^{2}+p^{2}}}{n p}\right)-\arccos \left(\frac{\sqrt{m_{2}^{2}+p^{2}}}{n p}\right)
$$

π / K separation
μ / π separation

Photon Yield

- Number of photons described by Frank Tamm equation:

$$
\frac{\mathrm{d} N}{\mathrm{~d} x}=2 \pi \alpha z^{2} \int_{\lambda_{1}}^{\lambda_{2}}\left(\frac{1}{\lambda^{2}}-\frac{1}{n^{2} \beta^{2} \lambda^{2}}\right) \mathrm{d} \lambda
$$

- Fused Silica: 50 photons/mm for $(300<\lambda<800 \mathrm{~nm})$
- Photon yield per wavelength for 1000 simulated events

Dispersion Relation

- Chromatic error due to dispersion

$$
n=n(\lambda)
$$

- Sellmeier equation:

$$
n^{2}(\lambda)=1+\sum_{i=1}^{3} \frac{B_{i} \lambda^{2}}{\lambda^{2}-C_{i}}
$$

- Example for fused silica

Dispersion Effects

Cherenkov angle in fused silica:

Possible solutions for band width reduction:

- Higher photon statistics
- Reduction of wavelength acceptance (optical filter)
- Correction of dispersion by achromatic optics
- Correction by means of photons time of propagation

RICH Detectors

- Example: LHCb Detector designed for study bottom and charm quarks
- containing tracking detectors (VELO/SciFi tracker), calorimeters, and 2 RICH detectors
- RICH1 for small particle momenta
- RICH2 for large momenta

RICH Detectors

RICH: Ring Imaging Detectors

proximity focusing

focusing

mirror focusing

2x RICH in LHCb:

DIRC Detectors

$$
4 \times 1.225 \mathrm{~m}
$$

Synthetic Fused Silica
Bars glued end-to-end

Other DIRCs

GlueX DIRC

- Horizontally placed BaBar boxes containing 48 fused silica bars in total
- Mainly pion/kaon separation
- Up to $4 \mathrm{GeV} / \mathrm{c}$ particle momentum
- Polar angle range: up to approx. 11°

Belle II ToP

- Large Plates in barrel shape around interaction point
- Mainly pion/kaon separation
- Up to $5 \mathrm{GeV} / \mathrm{c}$ particle momentum
- Polar angle range: $32^{\circ}-120^{\circ}$

Thank you very much for your attention!

[^0]: ALI-PERF-106336

