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Particle Identities

Particles identified via lifetime, mass, charge, ...
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Electron Discovery
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Example for particle
identification (PID) by mass
1890: Arthur Schuster
measuring charge-to-mass ratio

Energy given by electric field:
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Electron Discovery

» Second measurement required
to eliminate e (Millikan
experiment in 1910)

» Electric force compensating
gravitation and buoyancy:

(00 — 02)5mrgd
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» Radius determined from falling
speed of electron:
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» Measurement results multiple of
electron charge e

Charge [1071° ]
o N w & u o <




Proton Discovery

» 1925: Blackett's cloud chamber
images show absorption of
a-particles in a cloud chamber

» «-particle captured by nitrogen
converting into oxygen (not
carbon) and proton

UNta—=T04p

» Thickness and length TR
i i i from Anode Perforated cathode
indications for energy loss per Rusle L_) TS ",
track length dE/dx and particle o ) e 1 )’
energy l Gas st LOW

» More detailed measurements »?'Ikul_ A

using hydrogen in anode ray
tubes — discovery of the proton



Neutron Discovery

» 1930: James Chadwick shooting a-rays into Beryllium target
— neutral particles emitted

fa4+9Be — 2C+in

» First thought: ~y-rays emitted by beryllium (not deflected by
the magnetic field and extremely penetrating)

» Unlike y-rays not charging electroscope — new particle

» Analyzing kinematics reveals the same mass as proton —

neutron
polonium source . Geiger counter
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Pion Discovery

» Pion containing 1 up- and 1 down-quark

» Range too large (no electron)

» Scattering too large (no proton)

» Frequently captured by nuclei (no muon)

» 7t decaying into u* (two-body decay — equal kinetic energy)
>

PID using tracking, energy loss, and particle decay




Cloud Chambers

« particle

» Commonly filled with
isopropanol

» Thermal gradient between top
and bottom

» Thin layer of saturated vapor

fast and slow e®

» Charged particle followed by
condensation track

]




Bubble Chambers

v

Studying particle physics with
the Big European Bubble
Chamber (BEBC)

Installed in Proton Synchrotron
at CERN in 1977

Stainless steel vessel filled with
35m3 superheated liquid
hydrogen/deuterium

Operating temperature: 27 K

Operating pressure: 5 bar




Omega Baryon

» Discovery of Q™ baryon in
1964 at Brookhaven National
Lab (BNL) in bubble chamber:

K +p—>Q +KTK°

» Neutral particles not interacting
with matter

» Number of bubbles per
centimeter of track inversely
proportional to the square of
the particle velocity

» Rest mass calculated from
momentum and energy of decay
products

m = \/E2 — p2

6 B DD K
oiMeV/c)



Cherenkov Effect

» Cherenkov radiation: Charged particle traversing medium
faster than phase speed of light in medium

» Smaller velocities: Destructive interference of waves

Atomare Dipole




Cherenkov Effect

Classical analogue: boat on the water

DA 12/41



Cherenkov Effect

» Deriving Cherenkov angle

v
cos. = — = |cosb. = —
c

» Condition

c 1
v>—=0=—
n n

» Using important relativistic correlation
L. P
E \ /p2 + m?2

» Threshold momentum for Cherenkov radiation:

8=

m

Pth = \/ﬁ ~ 0.8m




Threshold Cherenkov Counters

» Maximum refractive index (derived from previous formula)

» Momentum p = 12GeV/c

> p: n>1.0035 K*: n>1.000843, 7*: n > 1.000129
» Electrons visible in all counters

» Other Cherenkov detector concepts: DIRC, RICH
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Charmonium Discovery

» First charmonium discovery of J/W(1S) in 1974 with mass in
3096 MeV — November revolution in particle physics

Mass (MeV)
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Brookhaven Experiment

» Discovery of J by Samuel Ting

» Goal: finding new particles decaying into e™ /e~ and put/u~
» Two Cherenkov threshold counters Cy and C,

» Observed Reaction

p+Be—=J+X—set+e +X




Pierre Auger Experiment

Commiunications antenna

v

1,660 surface detector stations Electronies box

(distance 1,5000 m)

Diameter: 3.6 m

Water depth: 1,2m
Volume: 12 m?3

3 PMTs per water tank

Filling: highly purified water
Detection of Cherenkov light

vVvyVvYyVvyYvVyVyvyy

Number of secondary particles
depending on shower energy

v

Amount of Cherenkov light
proportional to number of
particles



Particle Showers

Reminder:

Dominant processes
at high energies ...

Photons : Pair production
Electrons : Bremsstrahlung

Pair production:
183

1
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9N AXO [in cm or g/em?]
Absorption
coefficient:
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[Xo: radiation length]
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After passage of one Xp electron
has only (1/e)" of its primary energy ...

[i.e. 37%)]



Particle Showers

Principle:

Alternating layers of absorber and
active material [sandwich calorimeter]

Absorber materials:
[high density]
Iron (Fe)
Lead (Pb)
Uranium (U)
[For compensation ...]

Active materials:

Plastic scintillator

Silicon detectors

Liquid ionization chamber
Gas detectors

Scheme of a
sandwich calorimeter

passive absorber
shower (cascade of secondaries)

incoming particle

active layers

Electromagnetic shower



HERMES Detector

Main purpose: measuring spin structure of the nucleons
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HERMES Detector




HERMES Calorimeter

>

840 identical radiation hard F101
lead-glass blocks

Area of each block: 9 x 9cm?
Length of each block: 50cm
(corresponding 18 Xp)
Block size chosen to contain 99% of
EM shower inside 3 x 3 blocks
Wrapped in aluminum (mirrror)
Block length optimized to improve
energy resolution
PMTs glued to end of blocks
Particle identification
» Muons: minimum ionizing
particles
» Pions: minimum ionizing peak
with long tail due to hadronic
showers
» Electrons lose nearly all energy

Counts
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Modern PID Motivation

v

Identifying different particle species

Long-living (but still decaying) neutral particles: A® or =°

Short-living particles: 7, mesons with charm and bottom
quarks

Determination of 4-vector momentum of all decay products
required to calculate the invariant mass of the original particle

PID reduces to identify all stable particles in the final state: p,
n, K%, KLO, ot et ut, v
3-momentum of particle measured: second observable
required

» Total energy: E = ympc?

> Energy loss (Bethe-Bloch) 9 o 45 In (6%7°)

» Time of Flight (ToF) 7 o

B
1

» Cherenkov angle cosf = o7
000

» Transition radiation v >



Mass Reconstruction

» Typical example of reconstruction of a particle decay:

s

0

the LHC experiments)

— 77 (one of the first composite particles reconstructed in

» Technique also used to search for more exciting signals, like
the Higgs boson (Last missing piece of the Standard Model,
discovered 5 years ago at the LHC)
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Recent Particle Detectors

Muon Detectors Electromagnetic Calorimeters

Solenoid

Barrel Toroid

Inner Detector
Hadrenic Calorimeters

9

Detector characteristics
Width: 44m
Diameter: 22m
Weight: 7000t

CERN AC - ATLAS V1997
Forward Calorimeters

End Cap Toroid



Interaction with Matter

» Charged kaon decay visible in
tracking detector via
characteristic " kink”

» Sampling calorimeters
(lead-scintillator) and
homogenous (Lead-Tungsted)
calorimeters available

» Neutrinos do not interact with
matter (missing energy)

» Quark flavor tagging identifies
flavor of jet responsible for jet

» Hadrons with beauty quarks
having large lifetime (secondary
vertex)

> Kg and A known as V°
particles due to characteristic
decay vertices:

+

Kg—>7r T

innermost layer ————————» outermost layer

tracking electromagnetic hadronic muon
system ___calorimeter _calorimeter __system

photons
[endad

electrons
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C. Lippmann - 2003



Separation Power
Definition of separation power:

M2 — p1
%(01 + 02)

o =

Probability for misidentification:

Prisia(no) = % [1 —orf <2n(\7@)]

ho hg
201 302
——s




Energy Loss

Energy loss of u™ as function of its momentum
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Energy Loss
» Energy Energy loss dE /dx depending on particle mass
» Height of measured signal directly correlated with energy loss
» Particle identification (PID) especially for small momenta
» Smearing from detector resolution and Landu distribution

ALICE performance
Pb-Pb |sy, = 5.02 TeV

\He

2

TPC dE/dx (arb. units)




Time of Flight

» Time difference between particles

1 1 L 1 1
At:L(\/l\/z>:C<ﬁllﬁz)

> Inserting
g_P___ P
E p2+m?
leads to
L
At = —(E1 — <\/p —|—m—\/p +m>

pc?
> Using E>m=E~m:

L




Time of Flight

> Separating K/m at p=1GeV/c
for L=2m = o; =~ 800 ps
» Error propagation

2
Om? =2|m <Up> +
p

1
2 o1\2]2
+ t * L

» Assuming small errors in L in p:

» Mass resolution:
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Time of Flight
» ALICE Multi Resistive Plate

Chamber (Time of Flight pep gooroce pa/"‘c'“_j_
system) ‘ , = -Hv 0k
> Particle ID in high multiplicity o s e
environment — ToF with very o ,’ gm0
high granularity and coverage of " . S
full ALICE barrel i IT Pokap s

» Gas detector only choice

TOF B

ALICE Performance
Pb-Pb | Sy,=5.02TeV J

10
p (GeV/c)



Modern Cherenkov Detectors

» Required Resolution: Difference of Cherenkov angles
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Photon Yield

» Number of photons described by Frank Tamm equation:

dn , [ [1 1

1

» Fused Silica: 50 photons/mm for (300 < A < 800 nm)
» Photon yield per wavelength for 1000 simulated events

— Simulations

= Theoretical Model

860350 400 450 500 550 600 650 700 750 800
Wavelength [nm]



Dispersion Relation

» Chromatic error due to dispersion
n=n(\)

» Sellmeier equation:

» Example for fused silica

o
o
R

Simulations

¢ | = Theoretical Model

Cherenkov Angle [rad]

B ML - :
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Transparent Medium
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Dispersion Effects
Cherenkov angle in fused silica:

Dispersion Effect

Cherenkov Angle [rad]
=)
3
=]

0.0 0.5 10 15 2.0 2.5 3.0 3.5 4.0
Particle Momentum [GeVv/c]

Possible solutions for band width reduction:
» Higher photon statistics
» Reduction of wavelength acceptance (optical filter)
» Correction of dispersion by achromatic optics
» Correction by means of photons time.of propagation



RICH Detectors

» Example: LHCb Detector designed for study bottom and
charm quarks
» containing tracking detectors (VELO/SciFi tracker),
calorimeters, and 2 RICH detectors
» RICH1 for small particle momenta
» RICH2 for large momenta

side view £cAL HCAL

scifi RICH2 M2 M
tracker == !

3 M4 M5

vertex & |
locator j ! i <
(VELO) 7"~ NI | [ [

5m 10m 15m 20m z



RICH Detectors

RICH: Ring Imaging Detectors

L SES

mirror focusing

proximity focusing focusing

2x RICH in LHCb:

Gas CF,

12 (m)

np > n1: Focusing
ny < ny: Defocusing

A 1
aerogel
photon
detector
s
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charged — Che
particle —
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photon
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charged —
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DIRC Detectors

Purified Water

Light
Catcher

17.25 mm Thickness
(35.00 mm Width)

Track \

\

4x1.225m
Synthetic Fused Silica
Bars glued end-to-end



Other DIRCs

GlueX DIRC

» Horizontally placed BaBar boxes
containing 48 fused silica bars in
total

Supporting pracket

|
I

steel box

» Mainly pion/kaon separation
» Up to 4 GeV/c particle momentum
» Polar angle range: up to approx.
11° =t ‘
Belle Il ToP e

» Large Plates in barrel shape around
interaction point

» Mainly pion/kaon separation

» Up to 5GeV/c particle momentum
» Polar angle range: 32° — 120°




Thank you very much for
your attention!
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