

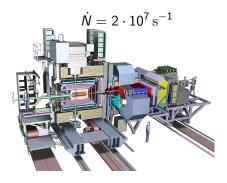
Particle Identification PID PID detector concepts

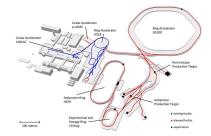
Mustafa Schmidt

EURIZON Detector School 2023

July 25, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

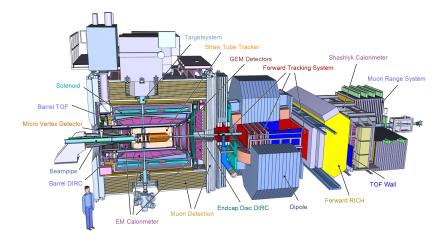

PANDA Spectrometer


FAIR

- Antiprotons p̄ from HESR
- High luminosity mode:

 ${\cal L}=2\cdot 10^{32}\,{\rm cm}^{-2}{\rm s}^{-1}$

Average interaction rate:



PANDA

- *pp̄* collisions with hydrogen target
- Created particles with forward boost in z-direction
- Excellent PID necessary to fulfill physics program goals

PANDA

PANDA (Antiproton Annihilation at Darmstadt) for studying collisions between antiprotons and fixed proton target

PANDA Physics Program

Nucleon Structure

- Generalized parton distributions
- Drell Yan process
- Time-like form factors

Hadron Spectroscopy

- Production of exotic QCD states
- Understanding new XYZ states
- Investigation of charm hadrons
- Production of states with all quantum numbers

Nuclear Physics

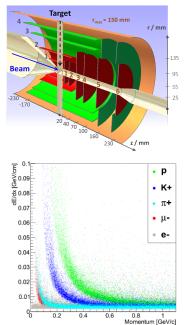
- Hypernuclear physics
- Hadrons in nuclei

PID Channels

Physics	Signal	Background	Final	$\sigma \cdot BR$	s/bg	PID
Case	Channel	Channel	State	(estimate)	ratio	challenge
Charmonium	$Y(4260) \rightarrow J/\psi 2\pi^{\pm}$		$2e^{\pm}2\pi^{\pm}$	60 pb		e/π
Spectroscopy		$2\pi^{+}2\pi^{-}$	$4\pi^{\pm}$	$46 \ \mu b$	$1 \cdot 10^{-6}$	sep.
	$Y(4260) \rightarrow J/\psi 2\pi^0$		$e^+e^-4\gamma$	30 pb		e/π
		$\pi^+\pi^-2\pi^0$	$2\pi^{\pm}4\gamma$	$50 \ \mu b$	$6 \cdot 10^{-7}$	sep.
	$X(3872) \rightarrow J/\psi\eta$		$e^+e^-2\gamma$	20 pb		e/π
		$\pi^+\pi^-\pi^0$	$2\pi^{\pm}2\gamma$	$290 \ \mu b$	$7 \cdot 10^{-8}$	sep.
	$\chi_c \rightarrow J/\psi\gamma$		$e^+e^-\gamma$	0.8 nb		e/π
		$\pi^+\pi^-\pi^0$	$2\pi^{\pm}2\gamma$	0.29 mb	$2 \cdot 10^{-6}$	sep.
	$h_c \rightarrow \eta_c \gamma \rightarrow 2\Phi\gamma$		$4K^{\pm}\gamma$	20 pb		$p/K/\pi$
		$\Delta^{++}\Delta^{}\pi^0$	$\overline{p}p2\pi^{\pm}2\gamma$	$530 \ \mu b$	$4 \cdot 10^{-8}$	sep.
		$4\pi^{\pm}\pi^{0}$	$4\pi^{\pm}2\gamma$	$750 \ \mu b$	$3 \cdot 10^{-8}$	
	$\psi(3770)$		$2K^{\pm} 4\pi^{\pm}$	14 pb		K/π
		$\overline{\mathrm{p}}\mathrm{p} \to X$	X	60 mb	$2 \cdot 10^{-10}$	sep.
	$\psi(4040) \to D^* \bar{D}^*$		$2K^{\pm} 4\pi^{\pm}$	0.46 pb		K/π
		$\overline{\mathrm{p}}\mathrm{p} \to X$	X	60 mb	$1 \cdot 10^{-11}$	sep.
Exotics	$\eta_{c1}\eta \to DD^*\eta$		$2K^{\pm}2\pi^{\pm}8\gamma$	0.06 pb		K/π
		$\overline{\mathrm{p}}\mathrm{p} \to X$	X	50 mb	$1 \cdot 10^{-12}$	sep.
	$\xi(2230) \rightarrow 2\Phi$		$4K^{\pm}$	3 nb		K/π
		$\overline{p}p \to X$	X	60 mb	$5 \cdot 10^{-8}$	sep.
Baryon	E+E-		$\overline{p}p4\pi^{\pm}$	$1 \ \mu b$		
Production		$\overline{\mathbf{p}}\mathbf{p} \to X$	X	60 mb	$2 \cdot 10^{-5}$	
Electromagn.	$\overline{p}p \rightarrow e^+e^{-a}$		e^+e^-			e/π
Formfactors	_	$\overline{p}p \rightarrow \pi^+\pi^-$	$\pi^+\pi^-$		$2 \cdot 10^{-6}$	sep.
Drell-Yan	$\overline{p}p \rightarrow \mu^+ \mu^- X$		$\mu^+\mu^-X$			μ/π
Process		$\overline{\mathbf{p}}\mathbf{p} \to X$	X	60 mb	?	sep.
Hadrons in	$\overline{p}^{40}Ca \rightarrow J/\psi X$		e^+e^-X	0.3 nb		e/π
Nuclear Medium		$\overline{\mathbf{p}}^{40}Ca \to X$	X	1 b	$3 \cdot 10^{-10}$	sep.

PANDA PID Subsystems

PID Subsystems in target spectrometer of PANDA

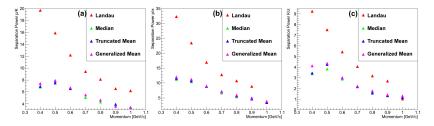

- Micro Vertex Detector (MVD)
- Straw Tube Tracker
- Barrel Time of Flight
- Barrel DIRC
- Disc DIRC
- Electromagnetic Calorimeter
- Muon counters

Redundancy in the forward spectrometer

<ロ > < 母 > < 臣 > < 臣 > < 臣 > ○ < ↔ 6/37

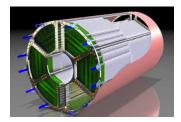
Micro Vertex Detector (MVD)

- Micro Vertex Detector (MVD) inner most detector
- Closest to primary interaction vertices
- 4 barrels around IP
- 6 disks in forward direction
- lnner layers: hybrid pixels $(100 \,\mu\text{m} \times 100 \,\mu\text{m})$
- Outer layers: double sided pixels
- Time resolution: 6 ns
- ▶ Pixel resolution: $28 \, \mu m$
- Strip resolution: 14 μ m
- Vertex resolution: 50 µm
- PID using energy loss



Micro Vertex Detector

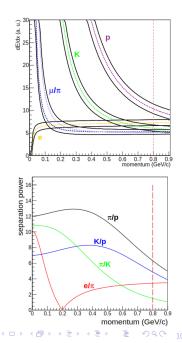
- Good PID performance especially for low particle momenta (below MIP) because of the steep falling of Bethe-Bloch
- Possibility to estimate dE/dx via energy loss ΔE per layer and Δx layer thickness:


$$\frac{\Delta E}{\Delta x} = \frac{\sum_{k=1}^{N} E_k}{\sum_{k=1}^{N} x_k}$$

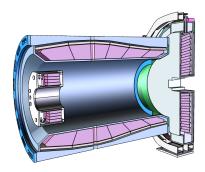
with N being number of hits per track

<ロト < 回 > < 巨 > < 巨 > 三 の < で 8/37

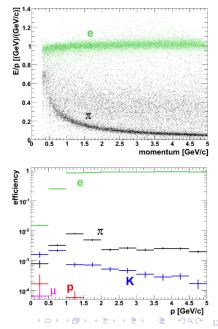
Straw Tube Tracker (STT)



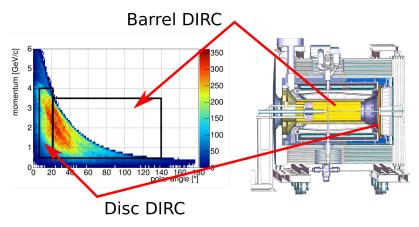
- Cylindrical shape around MVD
- 4,200 Al-mylar drift tubes filled with Ar/CO₂ in 21 – 27 layer
- 8 layers skewed by 3°
- Avalanche gain: approx. 100
- Inner radius: 15 cm
- Outer radius: 42 cm
- Tube diameter: 10 mm
- Tube length: 150 cm
- ρ/ϕ plane resolution: 150 μ m
- z resolution: 1 mm


Straw Tube Tracker

- Good PID for particles below 1 GeV/c momentum
- Approx. 25 measurements of energy loss per layer
- Simulated, digitized, and reconstructed in PandaROOT
- Simulations helped to optimize PID for different gas mixing ratios and pressures (pressure largest influence)


Electromagnetic Calorimeter (EMC)

- 2nd generation PbWO₄ crystals (improved photon yield and radiation hardness)
- In total 15744 crystals
- Operation temperature: $(-25 \pm 0.1)^{\circ}$ C (4x photon yield)
- Radiation length: 0.9 cm
- Molière radius: 2.1 cm
- Typical crystal dimensions: 20 cm × 2.5 cm × 2.5 cm
- Time resolution: $\leq 1 \text{ ns } (\geq 100 \text{ MeV})$
- Energy resolution: $1\% \oplus 2\%/\sqrt{E[\text{GeV}]}$
- ▶ Spatial resolution ≤ 1.5 mm
- ▶ 75% of crystals in phase 1


Electromagnetic Calorimeter (EMC)

- Ratio of deposited energy to reconstructed momentum *E/p* almost unity
- Hadronic interactions can lead to a higher energy deposition
- Shower shape (smaller for electrons, larger for hadrons) additional important for PID

Cherenkov Detectors in PANDA

- Two DIRC (Detection of Internally Reflected Cherenkov Light) in PANDA: Barrel & Disc DIRC
- Goal: π^{\pm}/K^{\pm} separation (covering full phase space)

Example: Benchmark channel $J/\psi \to K^+ K^- \gamma$

Detector Requirements

Separation power (π, K) :

Momentum coverage: Polar acceptance min/max:

$$\geq$$
 4 σ

1.5...4 GeV/c $\theta_x = 10^\circ, \ \theta_y = 5^\circ$ $\theta_{x,y} = 22^\circ$

Detector lifetime:

Distance to intersection point:

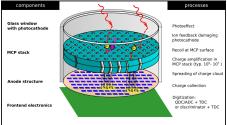
Magnetic field:

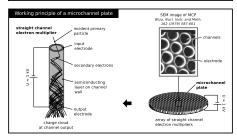
Energy deposit in radiator: Energy deposit in optics:

Charged hadron flux:

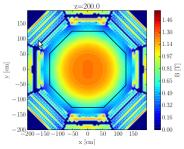
 ≥ 10 years in duty cycles of 6 m/y

 \approx 194 cm in front of EM calorimeter

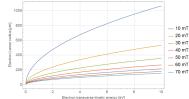

0.5...1.3 T


 $\approx 500\,\text{Gy}$ for fused silica $\approx 10\,\text{Gy}$ for fused silica

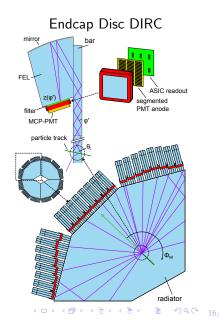
 $pprox 100\,\mathrm{Hz/cm^2}~(E_{kin}>10\,\mathrm{MeV})$


Microchannel Plate PMTs

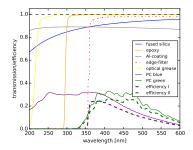
MCP-PMT working principle



B-field at Disc DIRC



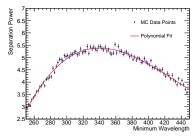
Larmor radius for electrons



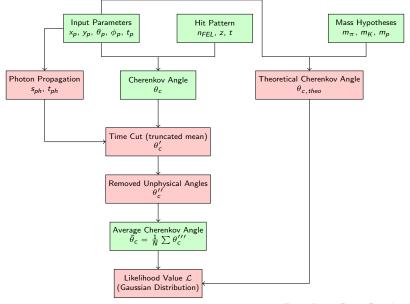
PANDA Disc DIRC

- Fused silica plate containing 4 independent quadrants
- Cherenkov light internally propagated to outer rim
- 8 Readout Modules (ROMs) per side with 3 Focusing Elements (FELs) per ROM sharing one MCP-PMT
- FELs focusing parallel light to same spot
- MCP-PMT with segmented anode (3 cols, 100 rows)
- PMTs connected to PCB with ASIC readout (TOF-PET from PETsys) for digitizing signals

Optical Parameters

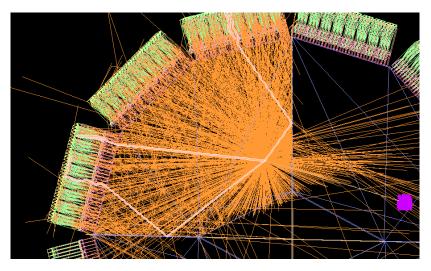

Expected Resolution

Detector resolution::

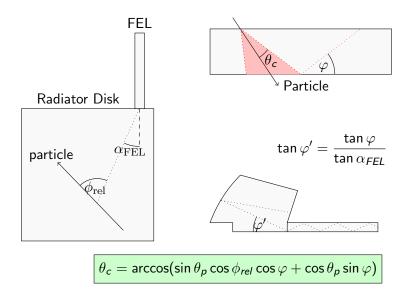

$$\sigma_{\theta}^2 = \frac{\sigma_{ph}^2}{N} + \sigma_{track}^2$$

 σ_{ph} containing chromatic and geometric error

- Mirror reflectivity of focusing elements
- MCP-PMT detection efficiency
- Transmission coefficiencies, refractive indices and absorption lengths of used materials
- Using bandpass filter with minimum wavelength cut off

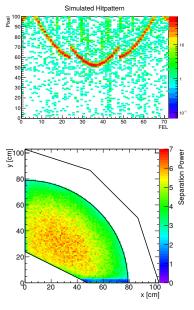


Reconstruction Algorithm



PANDA Disc DIRC

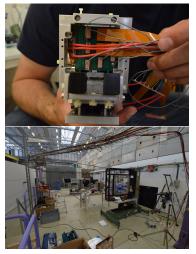
Monte-Carlo Simulations performed with Geant4



Geometrical Model

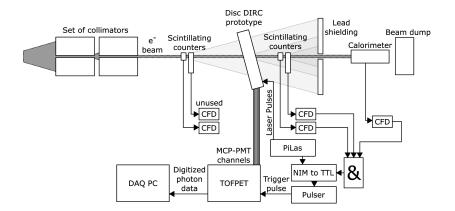
PANDA Disc DIRC

- All performance studies based on Monte-Carlo simulations
- Background induced mainly by additional reflections
- Simulated and measured hit pattern: Projection of Cherenkov ring into 2D sensor space (Cherenkov smile)
- Separation power decreasing for larger polar angles (ambiguities due to non-zero bar width)
- Small band with deteriorated performance as a result of mirror reflections



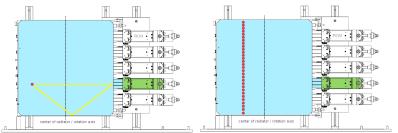
◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ① Q ○ 21/37

CERN Testbeam


Testbeam in T9 area at CERN in 2015

DESY Testbeam 2016

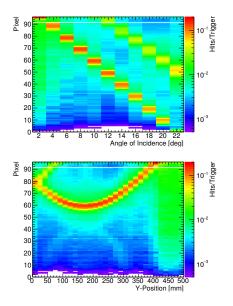
DESY testbeam setup for T24/1 hall:



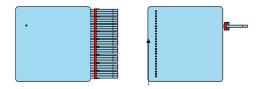
TOFPET: Free running readout device with 50 ps time resolution

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ 23/37

Radiator Setup


- Polar angle scan with fixed position
- y-axis scan with fixed angle
- One ROM with MCP-PMT attached to testbeam radiator plate

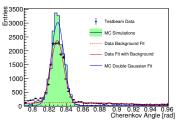
Radiator with Beam Position


Testbeam radiator: Fused silica plate $(50 \text{ cm} \times 50 \text{ cm})$

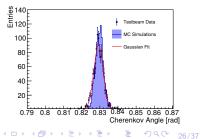
Measured Hitpattern

- Electrons at 3 GeV/c momentum for high statistics
- Linear dependency between pixel and angle of incidence
- "Cherenkov smile" for vertical scan
- Additional reflection on rim clearly visible
- Background hits from delta-electrons (housing) and additional reflections

Event Combination

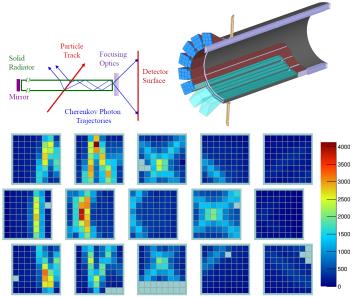


- Combining each event from every position to one new event
- Making a coarse time cut according to photon propagation time
- Reduction of background with truncated mean of pixel hits
- Obtained resolutions:


 $\sigma_{ heta} =$ 7.4 mrad

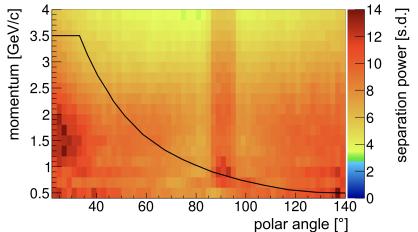
$$\sigma_{ar{ heta}} = 2.5 \, {
m mrad}$$

Single photon distribution

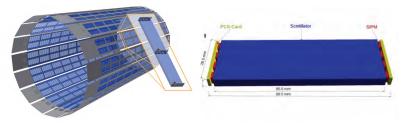


Cherenkov distribution

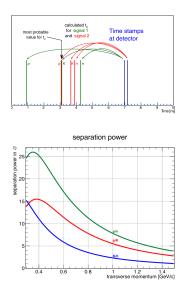
PANDA Barrel DIRC


Cherenkov light internally reflected to the rim (sensors)

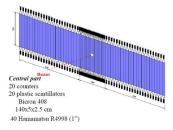
うへで 27/37

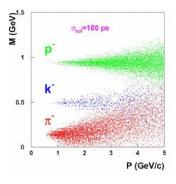

PANDA Barrel DIRC

PANDA Barrel DIRC meeting the requirement of $4\sigma \pi/K$ separation at 4 GeV/c particle momentum


Barrel ToF

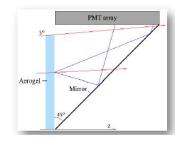
- ▶ PID of low momentum particles $p \le 1 \text{ GeV/c}$
- Excellent time resolution of approx. 100 ps
- ▶ 5,760 scintillator tiles with sizes about $30 \text{ mm} \times 30 \text{ mm} \times 5 \text{ mm}$
- Light weight construction
- Scintillator material: plastic (EJ-228 or EJ-232)
- Readout: Hamamatsu SiPM
- Front-end electronics: PETsys TOFPET ASICs


◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q @ 29/37


Barrel ToF

- Different particle masses are assumed and corresponding t0 calculated from track and momentum information
- Time resolution for 3 or more track of 167 ps
- Very good separation power for particles with low momentum
- Very good separation power for particles with low momentum

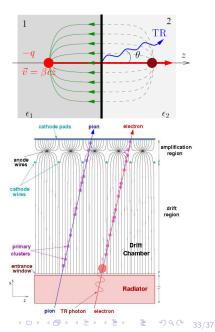
Forward ToF



- Time of flight in forward spectrometer essential
- No start counter ⇒ relative timing to Barrel ToF
- Scintillator wall of slabs
- Distance to target: 7.5 m
- Slab geometry: 140 cm × 10 cm (sides), 140 cm × 10 cm (center)
- Material: Bicron 409 scintillator
- Photon read out with PMTs on both ends
- Side part: 2 × 32 counters ⇒ 92 PMTs for photon readout

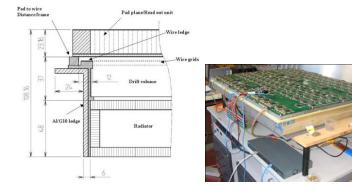
Forward RICH

- 2 layers of aerogel
- Refractive index: n₁ = 1.050 and n₂ = 1.047
- Only flat mirrors
- π/K separation up to $p = 10 \,\text{GeV/c}$
- mu/K separation up to p = 10 GeV/c
- Read out with Hamamatsu MaPMTs
 - 8 × 8 anode pixels with 6 mm size
 - Relatively cheap $\approx 1800 \, \text{EUR/unit}$
 - Robust and long life time

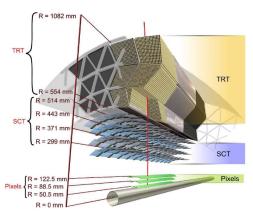

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 32/37

Transition Radiation

- Transition Radiation (TR): highly relativistic charged particles \(\gamma\) > 1000 pass boundary between two media with different primitive constants
- Induced mirror charge create a dipole together with the charged particle
- Emitting angle:

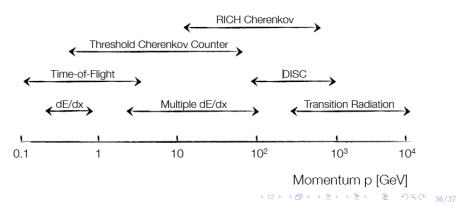

$$\theta = \frac{1}{\gamma}$$

- Photon energy between 5 and 15 keV
- Small photon yield: multilayers


ALICE TRD

energy of radiated photons: ∝ γ
 Number of radiated photons: αz²

ATLAS TRD


- Transition radiation tracker (TRT)
- 300,000 straw tubes with a xenon-based gas mixture
- ▶ 4 mm diameter equipped with 30 µm diameter gold-plated tungsted wire

PID Methods Comparison

- Different momenta for \(\pi / K\) separation require different methods
- Small momentum: Time of Flight and energy loss measurements
- Medium momentum: DIRC and RICH detectors
- Large momentum: Transition radiation

Thank you very much for your attention!

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ ≧ ♪ ○ ○ 37/37