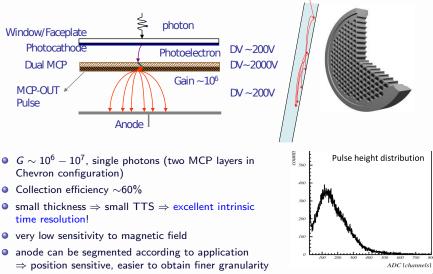
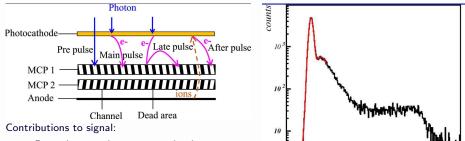


Silvia Gambetta University of Edinburgh



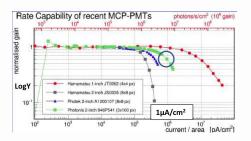
EURIZON detector school

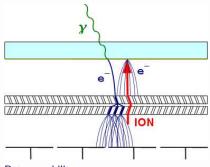

Micro Channel Plat PMT (MCP)

Similar to ordinary PMT but dynode structure is replaced by MCP: continuous dynode structure based on lead-glass disk with aligned pores (diameter = 6.5-25 μ m, length = 400-1000 μ m)

2 / 40

MCP PMT timing characteristics

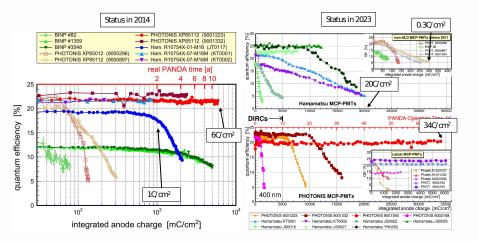

- Pre-pulse: no photon conversion in photocathode, SE in micro-channel, lower amplitude
- Main pulse: photon conversion in photocathode, SE in micro-channel, nominal amplitude
- Late pulse: after photoelectron backscattering and re-entry in micro-channel, ~nom. amplitude
- After pulse (Ion Feed-Back): ionisation effects \rightarrow Degradation of gain and quantum efficiency


Typical single photon timing distribution with narrow main peak (~40 ps) and contribution from photoelectron back-scattering

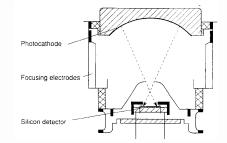
MCPs limitations: ageing and rate capability

Ageing:

- during the amplification process atoms of residual gas get ionised → travel back toward the photocathode and produce secondary pulse
- ion bombardment damages the photocathode reducing QE
- thin Al foil (few μm) placed between MCPs blocks ion feedback but also about half of the electrons (Atomic Layer Deposition)



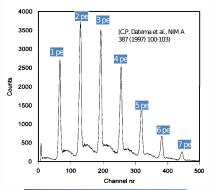
Rate capability:


- Charge replenishment related to MCP R and C
- Maximum anode current $\leq 10\%$ strip current
- typical saturation: 10MHz/cm2 \approx 2 $\mu\text{A}/\text{cm2}$ @ G=10^6 $\rightarrow\text{the lower G}$ the better

Evolution of the lifetime of MCPs

Hybrid Photon Detectors (HPD)

- Combination of vacuum photon detector (image intensifier) and solid-state technologies
- Input: collection lens, (active) optical window, photocathode
- Gain: achieved in one step by energy dissipation of keV photo-electron in solid-state detector anode ⇒ low gain fluctuations
- Output: direct electronic signal

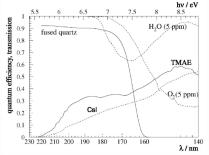


 $W_{Si} \sim 3.6 \text{ eV}$ to create an electron-hole pair in silicon using an accelerating voltage 20 kV $\rightarrow \sim 5000$ e-signal, enough to be detected using modern low-noise electronics encapsulation in the tube implies:

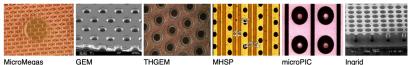
- compatibility with high vacuum technology (low out-gassing, high T bake-out cycles)
- internal (for speed and fine segmentation) or external connectivity to read-out electronics
- heat dissipation issues
 - \Rightarrow complicated manufacturing procedure, very high HV needed for operations

HPD energy resolution

- negligible gain fluctuation
- excellent energy resolution: separation between photon peaks depending on electronics
- possibility of producing HPDs with bump-bonded electronics
- spatial resolution determined by silicon chip ⇒ excellent granularity
- very sensitive to magnetic field
- operation requires HV~20 kV ⇒ challenging to implement
- complicated manufacturing: risk of damaging the vacuum



Gaseous Photon Detector


Gaseous Photon Detectors are a unique case in the family tree of photon detector: they are not commercially available

- Photon Detectors produced "in the house": a very cost-effective solution to cover very large areas
- they allow minimal material budget
- their operation is compatible with the presence of a magnetic field

a variety of techniques developed over the years:

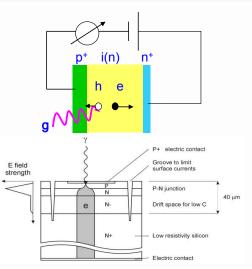
- Multi-Wire Proportional Chamber PD: combine photo-ionising agent with MWPC
- Micro-Pattern Gaseous Detectors: exploit photolithographic structuring techniques to define precise, micrometer-scale structures on flat substrate as electron amplification devices

Csl Cathodes (High Momentum PID detector in Alice)

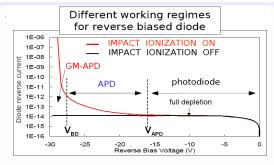
Main challenges

- reach a gain high enough ($\sim 10^5$)
- ${\ensuremath{\bullet}}$ control of the lon feedback and light emission from the avalanche process \rightarrow control of ageing
- operationally: purify gas and keep it clean

Solid state photon detectors


(Si) PIN diode

- P(I)N type
- p layer very thin (< 1µm) as visible light is rapidly absorbed by silicon
- High QE ($\lambda \approx$ 70%)
- Gain=1


Avalanche photodiode (APD)

- high reverse bias voltage: typically few 100V
- special doping profile → photons create electron-hole pairs in the thin p-layer on top of the device and the electrons induce avalanche amplification in the high field at the p-n junction
- Gain≈100, high gain fluctuations
- very high sensitivity to temperature and bias voltage

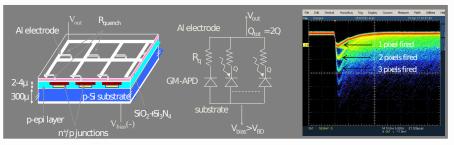
advantage: charge carriers are produced and detected within the same detector volume, unlike in vacuum-based or gas-chamber based light sensors disadvantage: need several photons hitting the photon detector to generate a detectable signal above the noise level

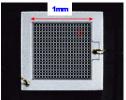
How to enhance gain?

GM-APD

- $V_{bias} > V_{BD}$ ($V_{bias} - V_{BD} \sim \text{few}$ volts)
- $G \rightarrow \infty$
- Geiger-mode operation (quenching resistor to stop avalanche)
- can operate at single photon level

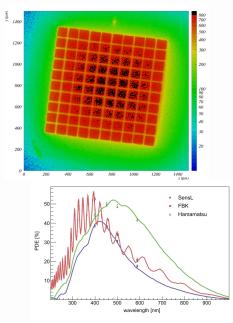
APD

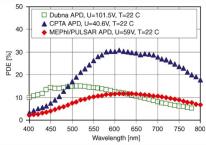

- $V_{APD} < V_{bias} < V_{BD}$
- G=(50-500)
- Linear-mode operation


Photodiode

- 0 < V_{bias} < V_{APD} (few volts)
- G=1
- operate at high level (few hundreds of photons)

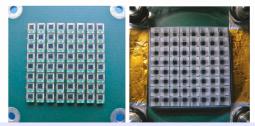
Silicon Photomultiplier (SiPM)


Matrix of n pixels connected in parallel on a common Si substrate. Each pixel is a GM-APD in series with a quenching resistor R_{quench} : an electron- hole pair produced by a photon in one of the micro-cells initiates the discharge and the micro-cell discharges until the voltage drops below the breakdown level, thus stopping the avalanche

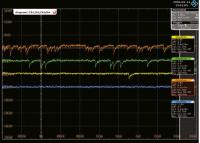


- micro cells of dimension $10-100\mu m$
- counts incident photon by summing the pixels: output from SiPM ~proportional to the number of hitting photons
- ${\rm \bullet}\,$ large detectable output for each incident photon $G\sim 10^6$

Photon Detection Efficiency



- intrinsic QE of silicon cell is excellent $(\sim 90\%)$ in the green/red range thanks to absorption characteristic of silicon
- PDE takes into account geometrical efficiency: fill factor due to quenching resistors and trenches in SiPM ⇒~ 40%
- trenches typically optimised to reduce optical cross talk between cells: secondary photons generated in the avalanche process through the ionisation and recombination of electrons and holes can induce a new avalanche in the neighbouring cell



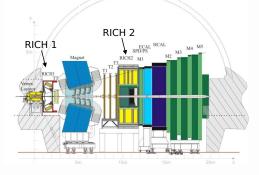
Dark Count Rate

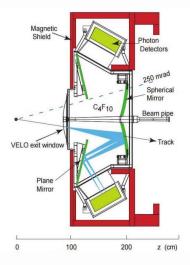
- high radiation environment induces defect in the silicon leading to high dark count rate and afterpulsing
- annealing can reduce the DCR: SiPM at temperatures between 175°C and 250°C
- studies on various model \rightarrow one example
 - SiPM with DCR 200 Hz/mm^2 at -40°C
 - DCR reaching 700 kHz/mm² after 10¹¹ n_{1 MeV eq}/cm²
 - rate reduced back to 40 kHz after annealing for 600 h up to 175°C
- promising results from annealing → can it be improved? can it be implemented in the experiment?

SiPM performance

Advantages:

- high gain: 10⁵ 10⁶ with low voltage (< 100V)
- Iow power consumption
- fast timing: $\sim 50 100 \text{ps}$ for single photons
- insensitive to magnetic field
- high photon detection efficiency $\sim 50\%$
- very compact, versatile geometry

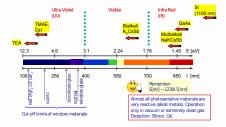

Drawbacks:


- high dark count rate at room temperature: 100kHz - 1MHz
- high dependence on temperature
- optical cross talk
- sensitive to radiation damage: DCR can reach 100MHz after irradiation ⇒ need to operate at very low temperature

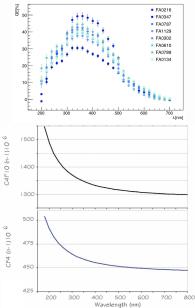
Example of applications with different types of photon detectors

LHCb RICH

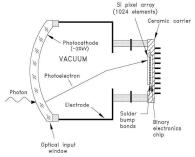
- LHCb experiment at CERN built to study band c-hadrons physics
- two Ring Imaging Cherenkov Detectors installed: π/K/p separation 2.6-100 GeV/c
- Cherenkov cones generated by charged particles passing through gas radiator are imaged as rings on photon detector plane



need to install position sensitive photon $$\operatorname{detector}$$


Photon detectors

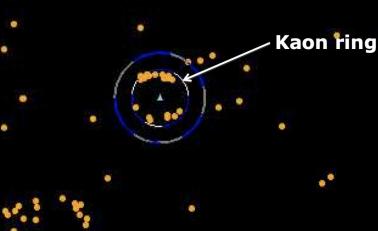
Larger Cherenkov photon yield towards the UV and the radiator dispersion drive the choice of the photocathode material


not only QE but also:

- granularity
- active area
- Iow dark counts (low noise)
- time response
- linearity

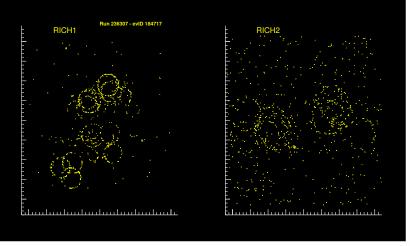
LHCb RICH

Pixel HPDs for former RICH (2009-2018) (QE=30% @300nm)

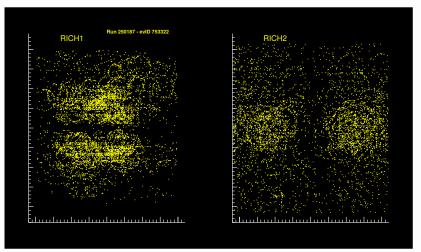


Multi-anode Photomultiplier Tubes for RICH upgrade (2022-) (QE=45% @400nm)

Pattern recognition

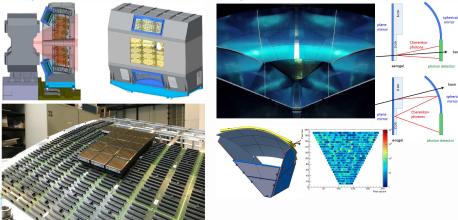

LHCb data (preliminary)

first generation


RICH 1

Pattern recognition

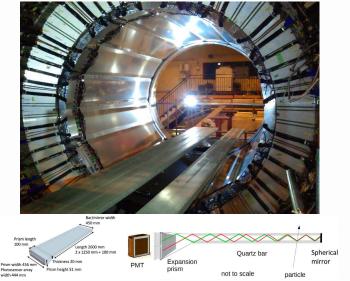
today


Pattern recognition

typical event in LHCb: can you find the rings? the importance of low noise and position sensitive photon detectors

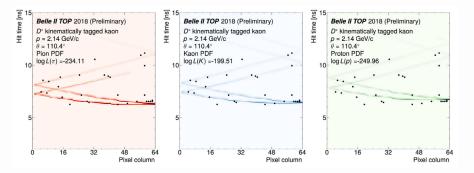
The success of MaPMTs

CBM RICH gas detector: CO_2 as radiator


CLAS12

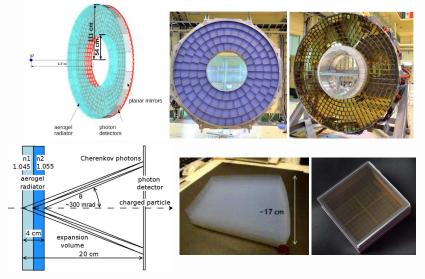
Aerogel RICH detector

characterisation of the same MaPMT device for three different experiments in particle and nuclear physics: very robust and reliable position sensitive photon detector


Belle II Time Of Propagation

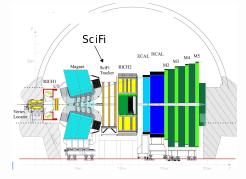
• π/K separation for 0.5-4 GeV/c

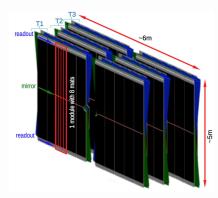
 measure time of arrival of Cherenkov photons with resolution better than 100 ps: Micro Channel Plate PMT (MCP-PMTs) developed to have TTS<50ps and resilient to magnetic field up to 1.5T


Identifying particles in a TOP

time-space distribution recorded by the Belle 2 TOP: different mass hypothesis superimposed \Rightarrow hits associated to a kaon candidate

Aerogel: ARICH Belle2

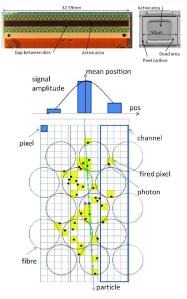

• π/K separation for 1-4 GeV/c



• two layer aerogel (n1=1.045, n2=1.055) coupled with Hybrid Avalanche Photo Detectors (HAPD) resilient to magnetic field up to 1.5T

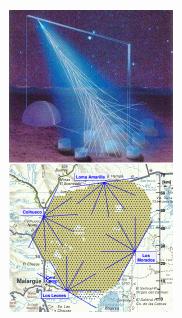
LHCb SciFi

- scintillating fibre tracker installed in LHCb for upgrade (2022-)
- fibre mats composed by 6 layers of fibres with diameter of 250 μm
- mats 2.5m long
- need for high granularity photon detector to be coupled with fibres mats



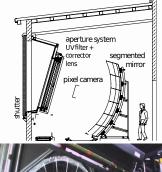
LHCb SciFi

SiPM with 128 channels per array, operated at -50 $^\circ$ C to limit DCR

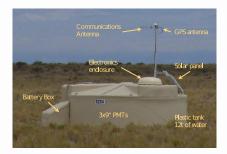


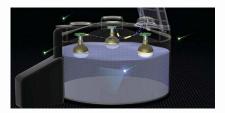
The Pierre Auger Observatory

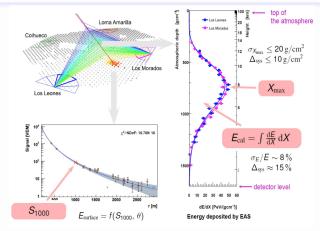
detection of Ultra High Energy Cosmic Rays via Extensive Air Showers



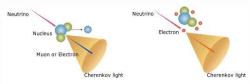
- 3000 km² in the Pampa Amarilla (Argentina)
- ~1600 water Cherenkov tanks
- 4 fluorescence telescopes

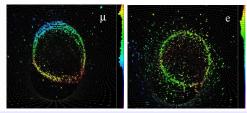

The Pierre Auger Observatory

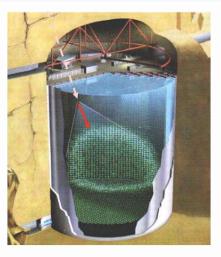

440 PMT per camera, hexagonal 40mm side: peak QE \sim 29% @375nm



3 PMTs per tank (9"): QE $\sim 23\%$ @400nm

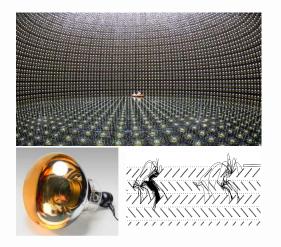

A hybrid event at Auger


- hybrid events used to calibrate energy measurement of surface detector (100% duty cycle) and fluorescence detector (10% duty cycle)
- atmosphere used as a calorimeter:
 - measurement of the energy deposit: UHECR spectrum
 - measurement of the depth of maximum of the shower: mass of the primary
 - measurement of the arrival direction: look for the source

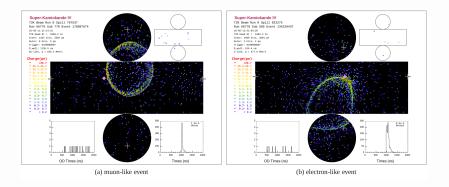

Super-Kamiokande

- Neutrino detector in Japan using water as the target and detector medium
- 1000m underground
- 50 kton of ultra pure water
- Cherenkov radiation used to identify electrons and muons
- PMT used to readout the signal

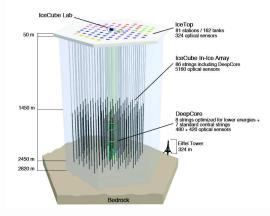
The generated charged particle emits the Cherenkov light.

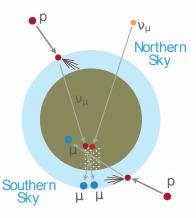


huge surface to be equipped with photon detectors


Super-Kamiokande

20 inch PMT developed by Hamamatsu ${\sim}20$ years ago: the biggest photon detector ever built (peak QE=22% @390nm)

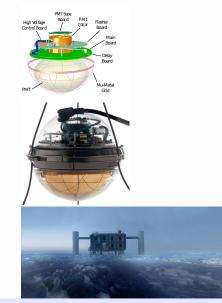

Events in Super-K



- vertex is established from the timing of the PMT hits, and an initial track direction is calculated by searching for a well-defined edge in the PMT charge pattern
- search for Cherenkov ring candidates
- PID algorithm then classifies all the candidate rings observed as either muon-like or electron-like by comparing with MC

Ice-cube

- Neutrino experiment in the South Pole using ice as Cherenkov radiator
- instrumented volume: 1 km³
- strings with 60 photon detectors 17 m apart deployed in ice



large volume to be instrumented in extreme conditions

Ice cube

10 inch PMT developed by Hamamatsu: peak QE=25%-34% @390nm

Ice Cube Gen2: Upgrade of photon detection system

Further light sensor technologies under study

Multi-PMT optical module (mDOM)

- 24 × 3" PMTs (Hamamatsu 12199-02)
- Based on KM3NeT design
- R&D and production by German groups

"D-Egg"

- Two 8" PMTs
- R&D and production by Japanese groups

Ice Cube Gen2: Upgrade of photon detection system

Many types of photon detectors developed over the years:

- sizes from 1×1 mm to 20inch diameter
- single channel or position sensitive
- single photon operation or multi-photons
- each application can need different device adapted to wavelength, speed, magnetic field conditions, ecc...
- just few examples shown in these slides
- constant R&D ongoing to develop new technologies

(Incomplete) References and credits

- Lecture notes from Stephan Eisenhardt MSc course
- N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker: "Photo-detection Principles, Performance and Limitations", Lectures from EDIT school 2011
- Text books: W.R. Leo, Techniques for Nuclear and Particle Physics Experiments
- RICH 2022 (2018) conference talks