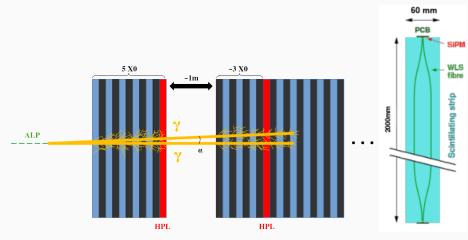


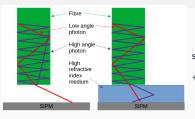
The SplitCal, a hybrid tracking calorimeter


EURIZON School for detector physics 2023

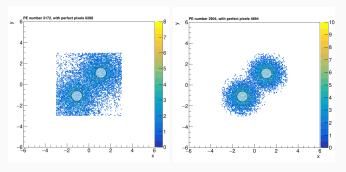
Matei Climescu 27/07/2023

Institut für Physik, Experimentelle Teilchen- und Astroteilchenphysik, Universität Mainz

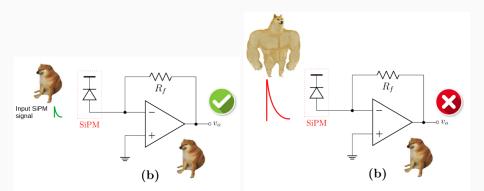
The SplitCal


(a) SplitCal view with an ALP shower. $\gamma\gamma$ decays must be reconstructed and disentangled and MIPS must be identified \rightarrow Dynamic range. Calorimeter is $6 \times 4 \text{ m}^2$.

(b) Energy reconstruction layer base unit.


Contact surface optimization

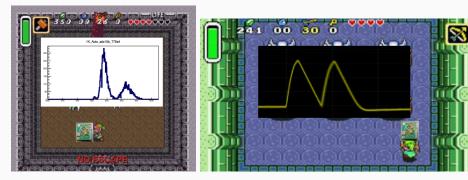
Putting no material between Fibre and SiPM means losing light to total reflection \rightarrow



But putting material means saturating more pixels

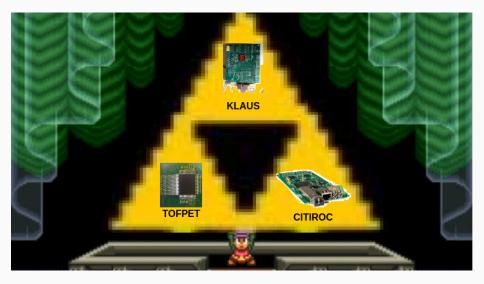
(a) 10k simulated γ at 2 cm on (b) 10k simulated γ at 2 cm on SiPM, n=1.0 SiPM, n=1.5

The Quest for the right ASIC



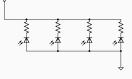
(a) Typical SiPM ASICs dealing with small (b) Typical SiPM ASICs dealing with large (up to $3 \times 3 \text{ mm}^2$) ($6 \times 6 \text{ mm}^2$)

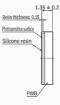
The Quest for the right ASIC

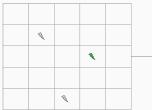


capacitive saturation [2022 fictional characters is purely coincidental.

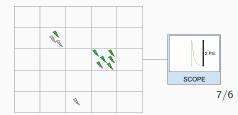
(a) PhD Student facing off against (b) PhD Student facing off against amplifier saturation [2022 recolored]. Any similarity to real or recolored]. Any similarity to real or fictional characters is purely coincidental.

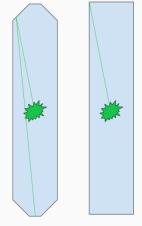

The Quest for the right ASIC





Backup: Contact surface optimization


- Best usage of SiPM pixels for dynamic range purposes is realized by spreading out photons onto SiPM surface
- Easiest way to realize this is by increasing the size of the air gap between Fibres and SiPM
 - Issue: loss of light from escaping higher angle photons
 - Answer: add reflective walls to redirect photons onto SiPM surface



Backup: Scintillator shaping

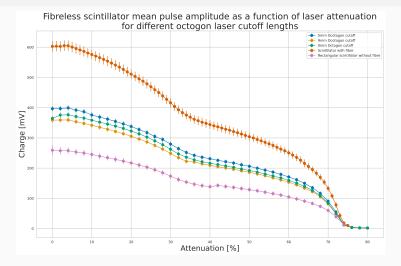
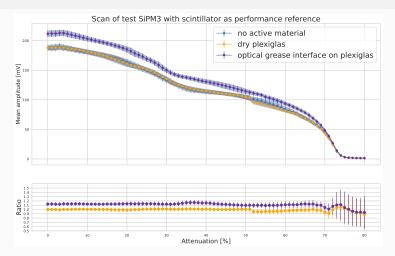

- Possibility of setup devoid of fibres has been investigated: much cheaper
- Scintillator strips have a potential downside however: corner effects
- This results in loss of light, Liouville theorem prevents from *concentrating* light
- Solution: bounce photons from corner areas to the SiPM on the other side of the strip
- Testing with fibres remains to be done as that system might also benefit from this geometry.

Figure 5: Working principle of Scintillator geometry optimization.


Backup: Scintillator shaping

 \rightarrow Fibres outperform naked scintillator but notable improvement is observed, tests with active diffusion to be performed.

Contact surface optimization through measurements

IGU

Better performance of 3 mm plexiglas with optical grease indicates that, outside of external light losses, the advantage of active diffraction should widen for higher gaps. 10/6

Backup: Contact surface optimization

- Angular distribution of fibre photon output is known from litterature
- ▶ Remaining limitation: optical total reflection within the fibre, reduced with higher external optical index: can be estimated from simulating the fibre itself → ongoing
- Measurements can be used to estimate the gains in the meantime using plexiglas and optical grease
- Measurements are challenging to produce replicably.

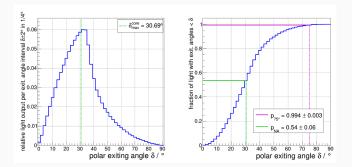
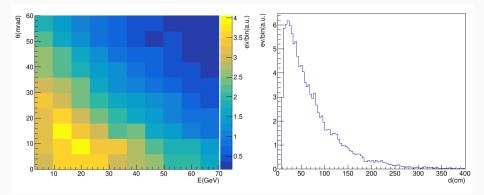



Figure 6: Double cladded WLS fibre angular output probability function (left) andcumulative distribution function (right).Nieswand, 201411/6

SplitCal directionality reconstruction

Figure 7: Left: angle of incidence θ [mrad] vs energy E [GeV] of photons; right: distance between the two photons at the SplitCal surface for 600 MeV ALP mass decaying to two photons in the ToyMC.