List of hands-on exercises week 2, 24-26 July

Exercise	Activity	Room	# students	Action
1	Drift tube characterisation	D11.04	4	Characterise a drift tube (gas detector) with a cosmics and a radioactive source, and derive the gas gain factor from the data
	Micro-pattern gas detector, measure mu- RWELL efficiency	D11.09	4	Measure mu- RWELL performance with a cosmic-ray telescope
3	Cosmo boxes	F13.07	×	Set up of a scintillator array and readout, and determine cosmic muon features
	Microchannel plate photomultipliers (MCP- PMT) with delay-line anode	G11.10	4	Learn how to measure with a MCP-PMT, and determine its time resolution and spatial resolution
5	Silicon photomultiplier (SiPM)	G11.05		Find out about core features of a SiPM avalanche photo-detector and see single photo-electrons
6	Silicon pixel detector	G11.24/05	4	Learn basics about a silicon pixel detector, calibrate the device and measure photons and ionising particles using a radioactive source.

Exercise	Activity	Room	# students	Action
7	Silicon strip detector, Landau distribution	G11.04		Set up a silicon strip detector with its readout chain, and reconstruct the Landau charge distribution using a radioactive source
8	Do-it-yourself particle detector	D11.12	6	Build your own silicon pixel detector and see signals from daily-life sources
9	ROOT tutorial	H12.21	6	Learn how to use ROOT for your data analysis and presentation of results
10	Geant4 tutorial	H12.21		Learn how to use Geant4 for modeling your experiment and for simulating particle interactions in your detector
11	Simulation of silicon pixel detector and spatial resolution	D11.01		Simulate detailed signal formation in your silicon pixel detector, and determine its performance as a function of detector features
12	Analysis of silicon pixel test beam data	D11.01		Analyse a set of test-beam data to characterise your pixel sensor and determine its performance