

Beam Intercepting Devices ITHPP visit at CERN

M. Calviani (SY-STI/TCD)

10 January 2023

SY/STI: Sources, Targets and Interactions Group

Sources

Build and operate **all CERN laser**-based particle **sources** and lasers for beam ionization/spectroscopy of short-lived nuclides → ~10 laser facilities to operate

 \rightarrow Electron sources for CLIC/AWAKE

Design, produce, operate beam intercepting devices in circular accelerators and transfer lines → More than 250 devices

- \rightarrow LHC collimation systems, dumps, etc...
- \rightarrow Devices for accelerator and personnel safety

Monte-Carlo Simulations beam-matter interactions → Fluka development and Geant4

Design produce, operate all CERN secondary particle production targets → operation of the ISOLDE/n_TOF facilities and AD-target → responsible of the use of 75% of CERN protons

SY

Beam Intercepting Devices

A beam intercepting device is a component that intercepts accelerated particle beams for diverse purposes, such as

Production of secondary particles ("target")
Protection of sensitive equipment ("collimator")
Safe disposal ("dump")

What type of challenges need to be faced? (1/3)

- Devices must be able to withstand operation and accident scenarios & protect delicate equipment
- Mostly employed as "last line of defence" against component damage
- Dependable components, whose failure often leads to long period of downtime
- Usually, the most radioactive components in an accelerator complex

SY

What type of challenges need to be faced? (2/3)

- High energy densities (several kJ/cm³/pulse)
- High power densities (MW/cm³)

10/1/2023

- High beam kinetic energy (up 700 MJ)
- High average deposited power (hundreds of kW)

FEATURE SYSTEMS ENGINEERING

CERNCOURIER.COM

INTERCEPTING THE BEAMS

From targets to absorbers, beam-intercepting devices are vital to CERN's accelerator complex.

https://cerncourier.com/a/intercepting-the-beams/

SY

What type of challenges need to be faced? (3/3)

- Ultra High Vacuum requirements (10⁻¹⁰ mbar)
- Movable parts with extremely high precision and flatness
- Physics requirements (sometimes implying materials with poor structural properties)
- Impedance (especially for colliders)
- Radiation damage and modification of thermo-physical properties

SY

Accelerator Systems

(STI)

Palette of absorbing materials employed at CERN

Low CTE, good thermal conductivity, low p, very high service T, exceptional robustness to beam impact Light structural materials, good thermal conductivity, low T_m, poor properties at high T

Exceptional strength while light, low CTE, low thermal conductivity

"king" of structural materials, low thermal conductivity

SY

Accelerator Systems

10/1/2023

Palette of absorbing materials employed at CERN

SY

SY Accelerator Systems

CERN

STI

SY Accelerator Systems

10/1/2023

CÉRN

LHC external beam dump

(STI)

<u>1.2% nominal Run3 max intensity</u> 6.09x10¹² p⁺ 6.6 MJ

55.2% nominal Run3 max intensity2.73x10¹⁴ p+297.6 MJCould melt rougly 2 t
of Cu

SY Accelerator Systems

CÉRN

10/1/2023

Beam impact experimental testing and validation

- Validation of design often include the possibility of testing components or integral devices under beam impact
- Sometimes devices and materials operate at the extreme uncharted territory of temperature and stress (where EOS are not available)
- Existing material constitutive models at extreme conditions are limited and mostly drawn from military research (e.g. Ta, Ir, W).
- Dedicated tests allows for numerical vs. experimental crosscheck

SY

Ta-irradiated sample (±7 kJ/cm3)

Neutron Tomography @PSI (NEUTRA)

Phys. Rev. Accel. Beams 21, 073001 (2018) European Journal of Mechanics / A Solids 85 (2021) 104149

Target opening and slicing cores at CERN

Observation of spalling voids

Tensile pressure shall be kept <2-3 GPa to avoid void nucleation

SY

Beam testing of antiproton targets

isostatic-graphite matrix! CERN SY (STI)

Accelerator Systems

Functional reliability / integrity

- Don't want the BIDs to break apart under load!
- Strength, fatigue, cooling performance
- Erosion, corrosion, wear
- High temperature, high strain-rate performance
- Complexity, repairability, repeatability, Quality Assurance
 - If special materials are employed, make sure your material is available in 5-10 years from now for spares

SY

Conclusions

- Beam Intercepting Devices are a multi-physics, multiexpertise and cross "cultural" systems
- Reliable construction relies on a delicate balance of different requirements and constraints
- Operational experience is a key aspect in the feedback loop

SY

home.cern