

In celebration of Phil Allport

Cambridge and the OPAL Microvertex Detector

* All inaccuracies due to historical documents

RESEARCH STUDENTS 1983

NAME	FROM	COLLEGE
S.C. ALLCOCK	CAMBRIDGE	MERTON
P,P. ÁLLPORT	IMPERIAL COLLEGE	WOLFSON
P.D. DAUNCEY	OXFORD	MERTON
R.F. DAVIE	AUSTRALIA	LINCOLN
D.B. GIBAUT	JERSEY	HERTFORE
S.R. KOSCIELNIAK	CAMBRIDGE	LADY MAI
D.J. MELLOR	OXFORD	MERTON
A.M. STREET	DURHAM	
W.J. WOMERSLEY	CAMBRIDGE	CORPUS
N.T, CLARK	OXFORD	HERTFOR
VAL	She field	Queer

ERTON FOLFSON ERTON LINCOLN HERTFORD LADY MARGARET HALL MERTON

CORPUS CHRISTI HERTFORD

RESEARCH STUDENTS 1983

NAME

S.C. ALLCOCK

P.P. ALLPORT

P.D. DAUNCEY

R.F. DAVIE

D.B. GIBAUT

S.R. KOSCIELNIAK

D.J. MELLOR

A.M. STREET

W.J. WOMERSLEY

N.T. CLARK

FROM

CAMBRIDGE IMPERIAL COLLEGE OXFORD AUSTRALIA JERSEY CAMBRIDGE OXFORD DURHAM

CAMBRIDGE

OXFORD

MERTON WOLFSON MERTON LINCOLN HERTFORD LADY MARGARET HALL MERTON

COLLEGE

CORPUS CHRISTI HERTFORD Queens.

• Neutrino experiments (BEBC, Tevatron)

• Muon scattering (EMC)

• TASSO experiment at PETRA

• European Hybrid Spectrometer at CERN (EHS)

- Neutrino experiments (BEBC, Tevatron)
 Phil Allport: Supervisor Dusan Radojicic
- Muon scattering (EMC)
 Val Gibson, John Womersley
- TASSO experiment at PETRA
 Paul Dauncey, Dave Mellor
- European Hybrid Spectrometer at CERN (EHS)
 Duncan Gibaut

Rutherford Summer School 1984

- Neutrino experiments (BEBC, Tevatron)
 Phil thesis (RAL-T-045): High-energy neutrino scattering at low q²
- Muon scattering (EMC)

Val thesis (RAL-T-035): The structure functions of free and bound nucleons in deep inelastic muon scattering

• TASSO experiment at PETRA

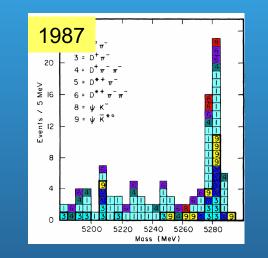
• European Hybrid Spectrometer at CERN (EHS)

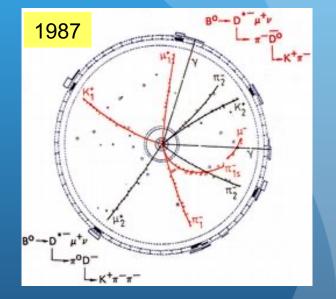
- Neutrino experiments (BEBC, Tevatron)
 Phil thesis (RAL-T-045): High-energy neutrino scattering at low q²
- Muon scattering (EMC)

Number of citations = 1

Val thesis (RAL-T-035): The structure functions of free and bound nucleons in deep inelastic muon scattering

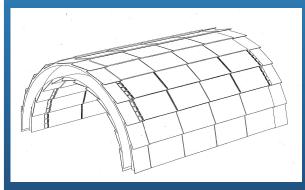
Number of citations = 1

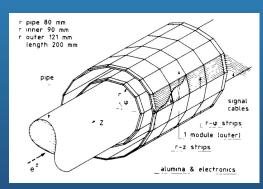

• TASSO experiment at PETRA

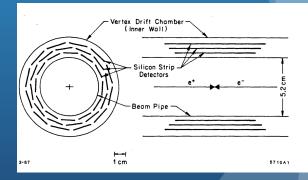

• European Hybrid Spectrometer at CERN (EHS)

History of Silicon Detectors

In the 1980s heavy flavour (charm and beauty) physics was a very "hot" topic....


B meson lifetime MAC-Mark II cτ ~490 μm Exclusive reconstruction of several b→c decay modes CLEO


B mixing observed ARGUS


History of Silicon Detectors

Early 1980's: Silicon microstrip detectors with better than $3\mu m$ spatial resolution had been developed and used in charm and beauty search experiments at the CERN SPS and the Tevatron at Fermilab.

Mid 1980's: Silicon microvertex detectors were being developed for LEP and the SLC.

DELPHI microvertex detectorALEPH minivertex detectorMark II silicon stripDELPHI 86-86 GEN-52NIM A257 (1987) 587vertex detector

630

Nuclear Instruments and Methods in Physics Research A273 (1988) 630-635 North-Holland, Amsterdam

A LOW POWER CMOS VLSI MULTIPLEXED AMPLIFIER FOR SILICON STRIP DETECTORS

P.P. ALLPORT, P. SELLER and M. TYNDEL

Rutherford Appleton Laboratory, Chilton, Oxon, UK

A low power CMOS VLSI circuit has been designed and built for the readout of $25 \,\mu$ m pitch silicon strip detectors. Each detector strip is connected directly to one of 128 electronic channels on the chip. A channel consists of a charge sensitive amplifier incorporating correlated double sample and hold for noise reduction. There is a single differential multiplexed output for the 128 channels on each chip. Results are presented on the performance of a detector equipped with the VLSI circuits.

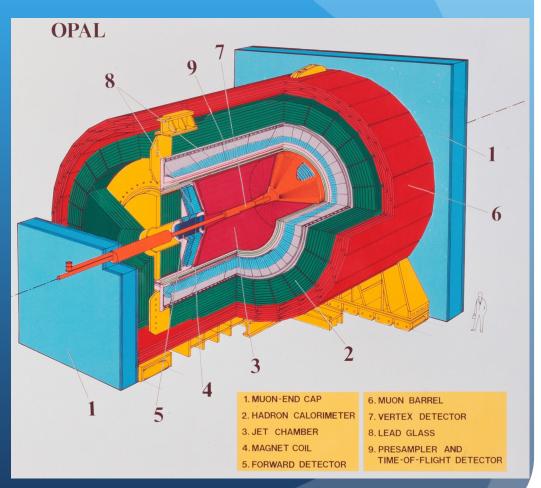
Planned vertex detectors requirements: Readout in confined space, 10⁵-10⁶ channels low power, low noise, radiation hard

Each 6.4 mm \times 6.4 mm VLSI circuit, fabricated with 5 μ m CMOS technology, consists of 128 individual amplifiers and a single multiplexed differential output. The outputs from several devices can be daisy-chained together to allow readout of multiples of 128 channels along a single twisted pair lead.

First results: Power 55 mW, noise 2000e- connected to 25µm strip Crosstalk <1%, readout rate 3 MHz, works up to 3krad

MX series

12

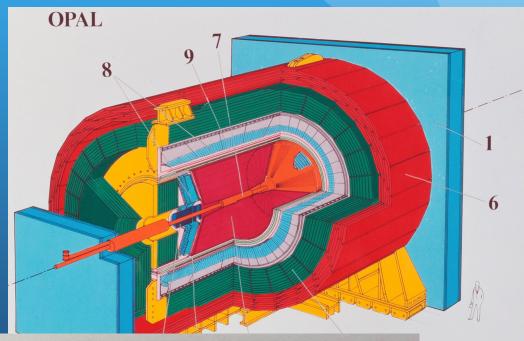

Fig. 3. The CMOS VLSI 128 channel amplifier with multiplexed readout

Cambridge 1989

Cambridge 1989

The OPAL experiment at LEP started taking data in 1989 to study the Z⁰ (1989-1995) and W^{\pm} (1996-2000) bosons.

Cambridge responsibilities: Vertex drift chamber Track trigger Endcap EM calorimeter Software



Cambridge 1989

The OPAL experiment at LEP started taking data in 1989 to study the Z⁰ (1989-1995) and W^{\pm} (1996-2000) bosons.

Cambridge responsibilities: Vertex drift chamber Track trigger Endcap EM calorimeter Software

Discussions were also ongoing to insert a silicon microvertex detector around a reduced diameter (53mm) beam-pipe

A SCHEME FOR UPGRADING THE CENTRAL TRACKING OF OPAL BY THE ADDITION OF AN INNER SILICON MICROVERTEX DETECTOR

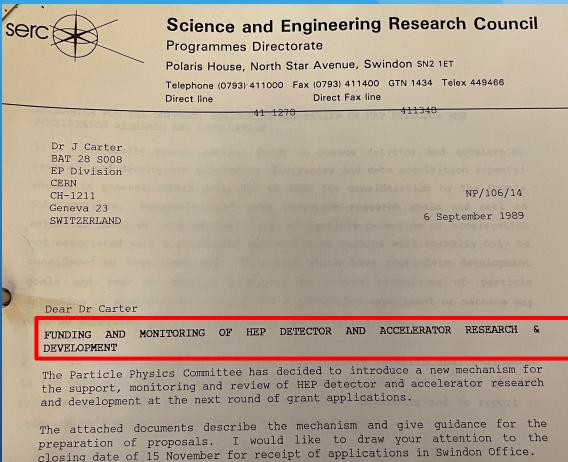
Cambridge University, Queen Mary College London and Electronics Development Group Rutherford Appleton Laboratory REL

ER AND

LIGHT DETECTOR

Cambridge 1989 Phil arrives in Cambridge to develop silicon strip detectors for the proposed OPAL microvertex detector

Janet Carter



and Sven Katvars

Cambridge 1989 Phil arrives in Cambridge to develop silicon strip detectors for the proposed OPAL microvertex detector

Janet Carter

Yours sincerely

R.J.Cashmore

Cambridge 1989 Phil arrives in Cambridge to develop silicon strip detectors for the proposed OPAL microvertex detector

Cambridge.

Phil Allport

10-October-1989

Cambridge Silicon Detector Development.

Abstract. The following is a list of items needed to establish the envisaged facilities at Cambridge for silicon detector work. Funding is also required for the cost of device fabrication.

No. on the second regration D.D. Armony N.K. Farel A.R. Humitany T.P. Leanard D.R. Macr. FG Gallarder, 815 Lawrence, 11.

Links Files (Links) (L

Physics Research Students 1990

The second D.D. Armony N.K. Fand A.R. Hamilton T.P. Lessard D.R. Mars FG Collector #15 100 110

Line of Lands Difference Line of Lands Difference Di

Nuclear Instruments and Methods in Physics Research A310 (1991) 155-159 North-Holland

FOXFET biassed microstrip detectors

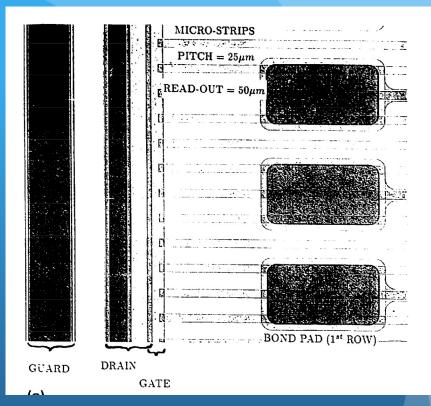
P.P. Allport, J.R. Carter, V. Gibson, M.J. Goodrick, J.C. Hill and S.G. Katvars Cavendish Laboratory, University of Cambridge, Cambridge, UK

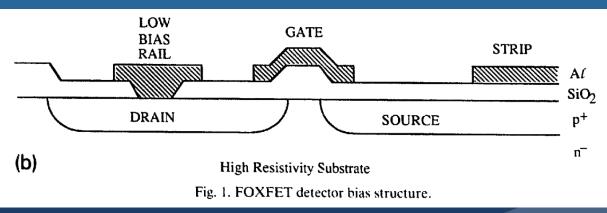
M.A. Bullough, N.M. Greenwood, A.D. Lucas and C.D. Wilburn Micron Semiconductors Limited, Lancing, Sussex, UK

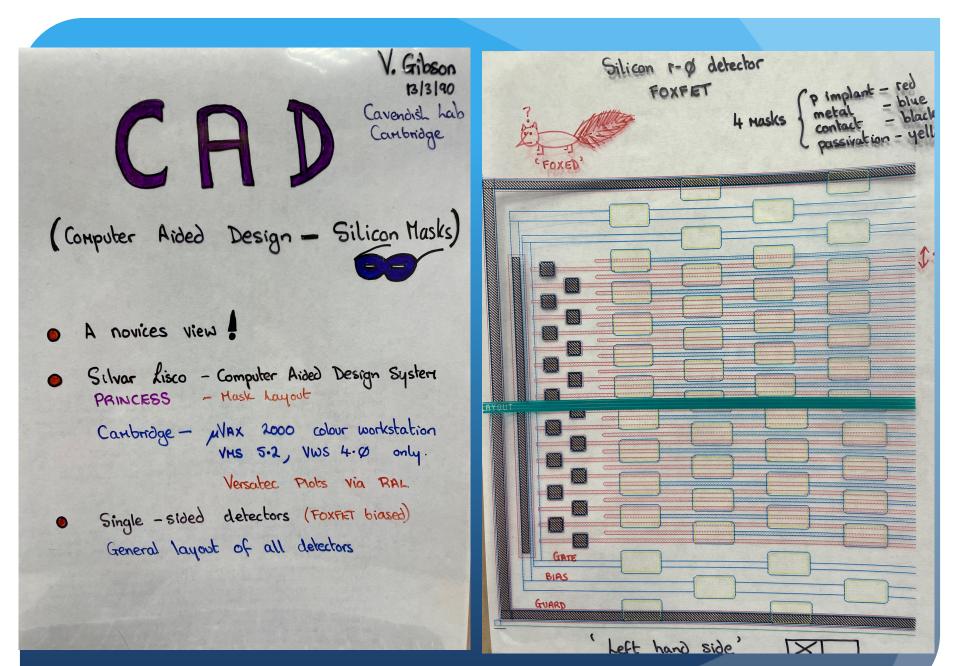
A.A. Carter and T.W. Pritchard QMW, London University, London, UK

L. Nardini, P. Seller and S.L. Thomas Rutherford Appleton Laboratory, Didcot, Chilton, Oxfordshire, UK

Previous approaches:


- Polysilicon resistors reliable strip connection, but high resistor values (>2MΩ) requires intricate frabrication
- Punch-through leakage current dependent dynamic resistance affects resolution


FoxFET biassing

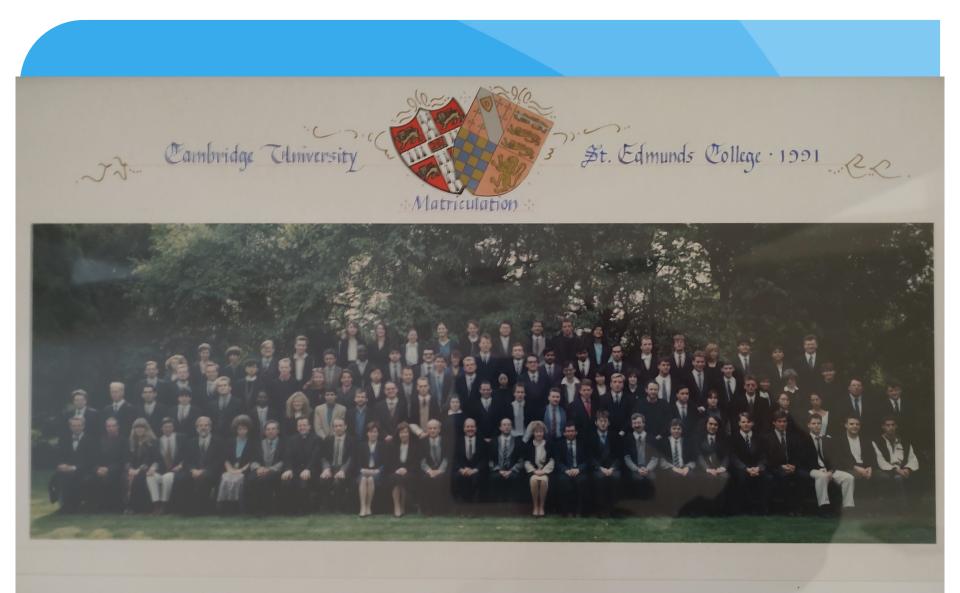

FoxFET biassing retains the simplicity of fabrication of the punch-through design whilst allowing the dynamic resistance to be tuned through the gate voltage control

Built in collaboration with

Micron Semiconductor Ltd

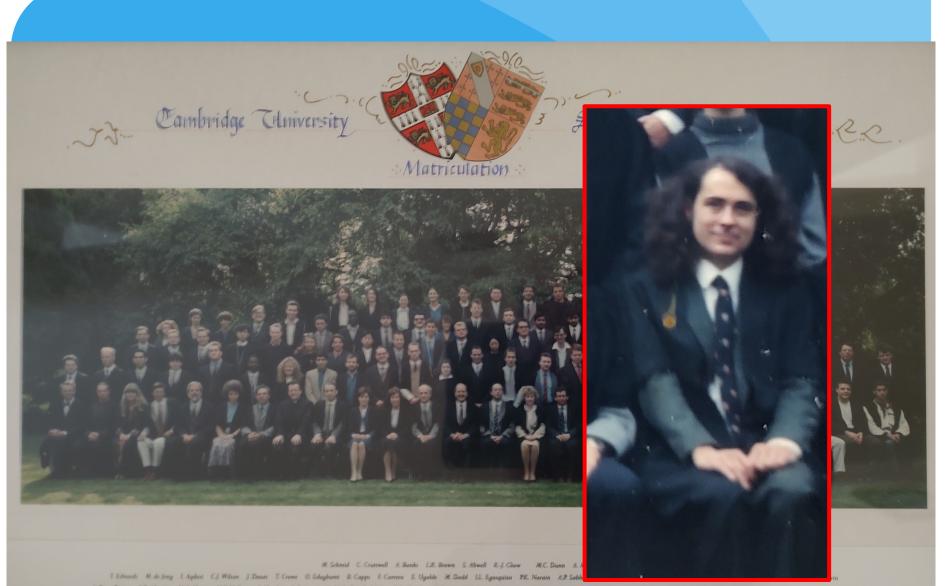
"Everyone was very excited and Janet Carter decided to come down to the new cleanroom at the Cavendish to be present for the momentous first measurement.

"Everyone was very excited and Janet Carter decided to come down to the new cleanroom at the Cavendish to be present for the momentous first measurement.


As I was explaining to Janet how we would do the measurement, in an expansive gesture I leant back onto a nearby table and heard an ominous crunch. Janet looked at the box, which now contained the smashed remains of precious test-structure (I blame the packaging), and simply said "You're allowed to do something like that once".

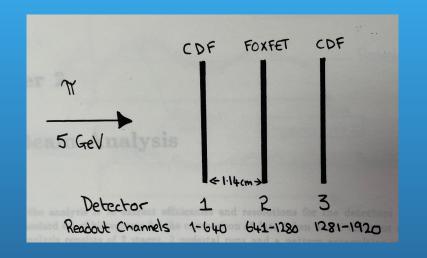
"Everyone was very excited and Janet Carter decided to come down to the new cleanroom at the Cavendish to be present for the momentous first measurement.

As I was explaining to Janet how we would do the measurement, in an expansive gesture I leant back onto a nearby table and heard an ominous crunch. Janet looked at the box, which now contained the smashed remains of precious test-structure (I blame the packaging), and simply said "You're allowed to do something like that once".

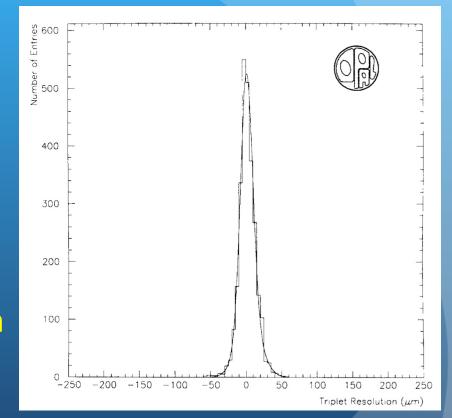

However, I since was informed that one definition of an "expert" is someone who has made every possible mistake. - On that definition I am proud to say I probably do qualify!"

Phil Allport 2023

M. Schmid C. Cruttwell R. Banks C.R. Brown S. Allwell & J. Chew M.C. Dunn R. Mold K. Parel


Edwards M. de Jong I. Aqdasi C.J. Wilson J. Dosar T. Crowe O. Edagbami & Cappi F. Carrera & Ugalde M. Bodd LL. Egusquita PK, Narain A.P. Sabharwal J.A. Munoz S. Hall D. Hubert E. Giunchi F. Galindo M. Gonzalez C. Galvin A Pecca Piccon C.D. Herring H.G. Henry M.E.H. Fung S. Hartley P. Sinnaere A. Nickalli & Lihida Z.E. Hornhy G. Jones D. Pickup J. Subua F. Praetsch S.M. Lake T. Kuwana A.A. Kohn S. Nettleton R. Judd N.J. Loader M.G. Lazo J. Page C. Morgan & Madmunan J. Numma C. Ohno-Naherde L.M. Nichohan N. Parmenter L.E. Mumba D. Maxwell S. Sharefi F.L. Eservano P. Blond M.J.K. Storey C. Slater I.Q.R. Thomas L. Selby R.J. Walters J.P. Rogers A. Walliker G. Thompson P. Salcedo C. Outterson R. Terry S. Ryang E. Yannouli T. Worcester D. Wins @ F. Banddaw I. Burnun H. Architedd A. Direks Fr.M. Thameert H. Mason P.B. McHugh C. Harard & O'Keeffe C. Richardson G.M.W. Cook R.M. Laws J.P. Luzio Z.M. O'Flynn E. Moss M.J. Unsworth B.White M. Herrtage P. Allport P. McCann S.N.S. Bather F. Barton M. Dalton D. Swannell

A Perce Procent CD Herring HG Henry M&H-Fung & Harriky F Sinnaeve A Nichalls & Ishida & E. Hornby G Jones D. Pickup J. Subua F. Praeesch S.M. Lake T. Kuwana A.A. Kohn S. Nettleton R. Judd NJ. Loader M.G. Lazo J. Page C. Morgan & Madamaan J. Namma C. Oliva-Valvarde L.M. Nichalus N. Parmenter L.E. Mamba D. Maxwell S. Sharafi FLR-Serrano P. Bland MJX. Storey C. Slater LQR. Thomas L. Selby R.J. Walters J.P. Rogers A. Walliker G. Thompson P. Salcedo C. Outterson R. Terry S. Ryang E. Yannouli T. Worcester D. Win Of Bandhow L.Burns H. Anchibald A. Dircks Fr.M. Thameert H. Masson F.B. McHugh C. Hazard & O'Keeffe C. Richardson G.W. Cook R.M. Laws J.P. Luzio B.M. O'Flynn E. Moss MJ. Unsworth B.White M. Herrage P. Allport P. McCann S.N.S. Bather F. Barton M. Dalton D. Swanned


Test beam

August 1990 started beam tests of prototype detectors:

3 detectors separated by ~1cm in 5 GeV charged pion beam:

Resolution ~6µm

OPAL Microvertex Detector

Nuclear Instruments and Methods in Physics Research A324 (1993) 34–52 North-Holland NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

The OPAL silicon microvertex detector

P.P. Allport ^b, J.R. Batley ^b, P. Capiluppi ^a, A.A. Carter ^h, J.R. Carter ^b, S.J. De Jong ^c, U.C. Dunwoody ^b, V. Gibson ^b, W. Glessing ^c, P.R. Goldey ^f, M.J. Goodrick ^b, W. Gorn ¹, R. Hammarstrom ^c, G.G. Hanson ^e, J.D. Hobbs ^c, J. Hill ^c, J.C. Hill ^b, R. Humbert ^d, F. Jacob ^j, M. Jiminez ^c, P. Kyberd ^h, C. Leroy ^g, X.C. Lou ^c, A.J. Martin ^h, J-P. Martin ^g, C. Moisan ^g, C.J. Oram ^k, T.W. Pritchard ^h, O. Runolfsson ^c, P. Seller ^j, R. Shaw ^b, P. Singh ^h, M.F. Turner ^b, M. Uldry ^c, D. Voillat ^c, D.R. Ward ^b and K.H. Wolf ^d

^a Dipartimento di Fisica dell'Università di Bologna and INFN, Bologna, 40126, Italy

^b Cavendish Laboratory, University of Cambridge, CB3 OHE, UK

^c CERN, European Organisation for Particle Physics, 1211, Geneva 23, Switzerland

^d Fakultät für Physik, Albert Ludwigs Universität, D-7800 Freiburg, Germany

^e Indiana University, Department of Physics, Swain Hall West 117, Bloomington, IN 47405, USA

¹ Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, USA

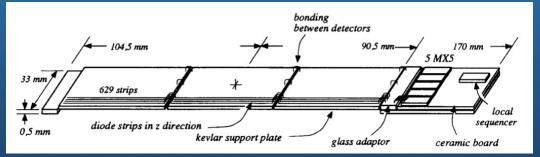
^g Laboratoire de Physique Nucleaire, Universite de Montreal, Montreal, Quebec, Canada H3C, 3J7

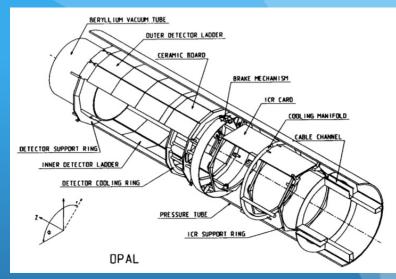
^h Queen Mary and Westfield College, University of London, London E1 4NS, UK

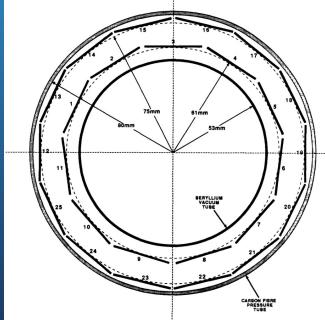
^t Department of Physics, University of California, Riverside, CA 92521, USA

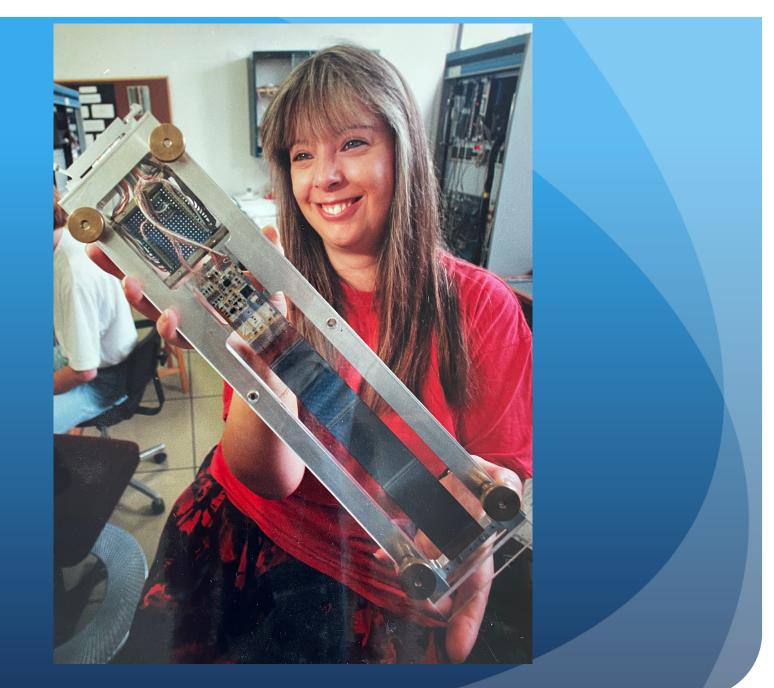
¹ Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX, UK

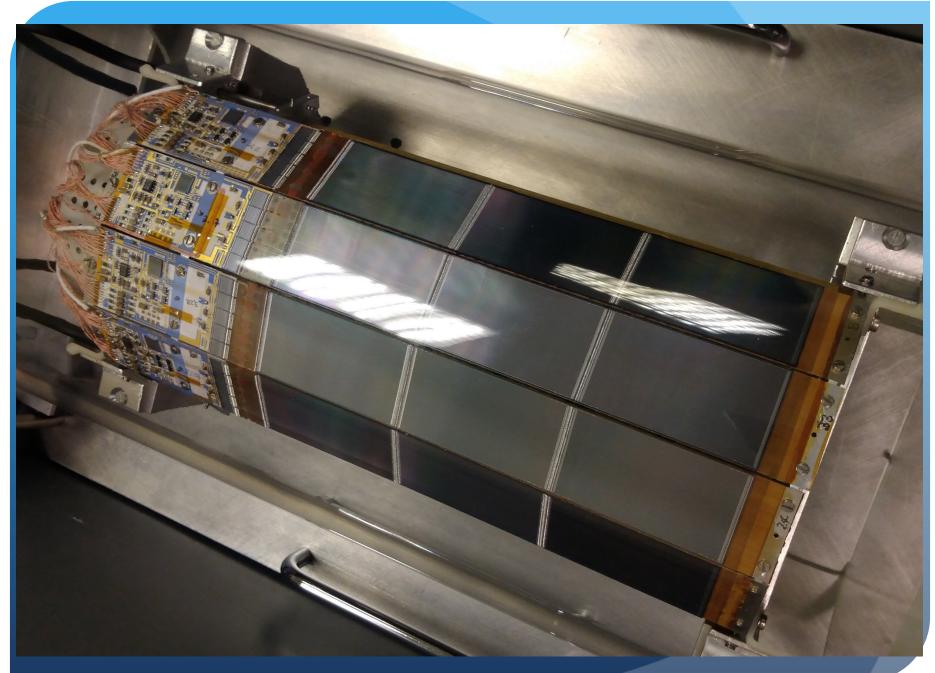
^k TRIUMF, Vancouver, Canada V6T 2A3

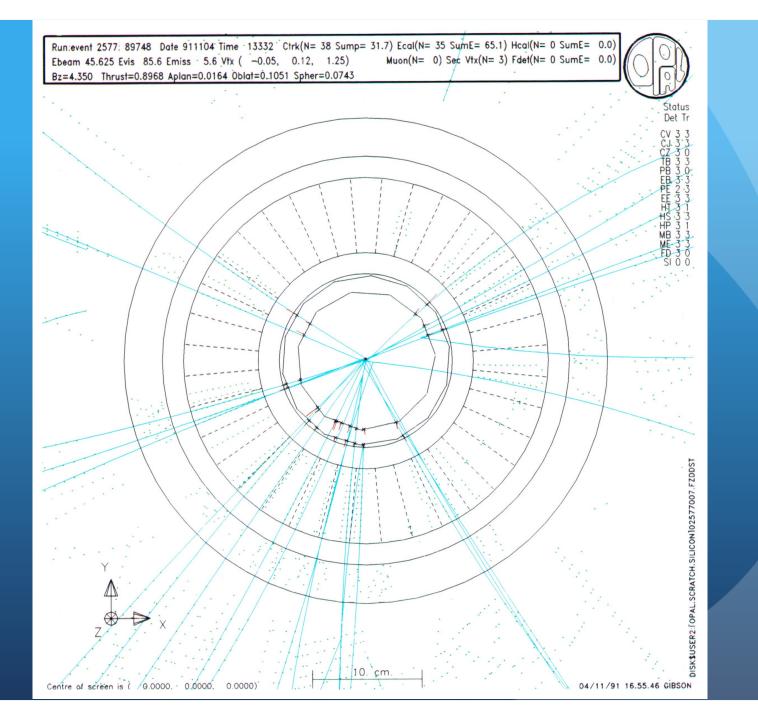

Received 23 July 1992

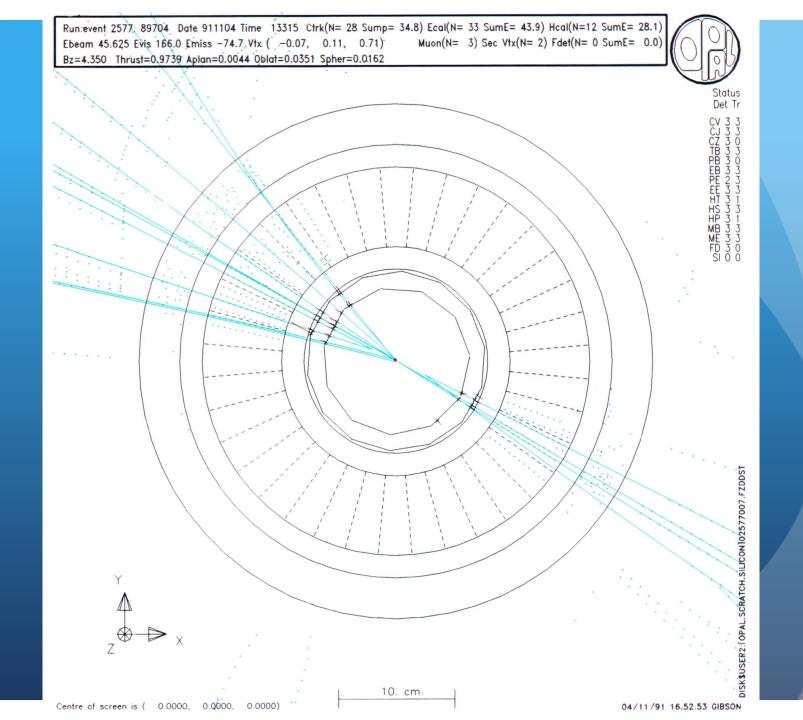

Installed and commissioned by May 1991

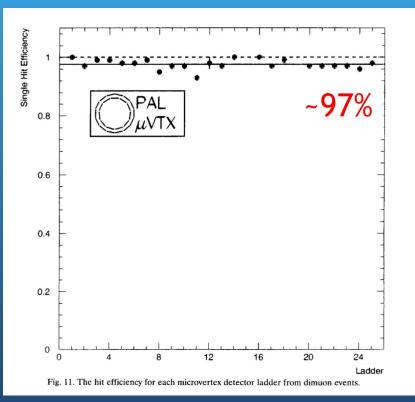

OPAL Microvertex Detector

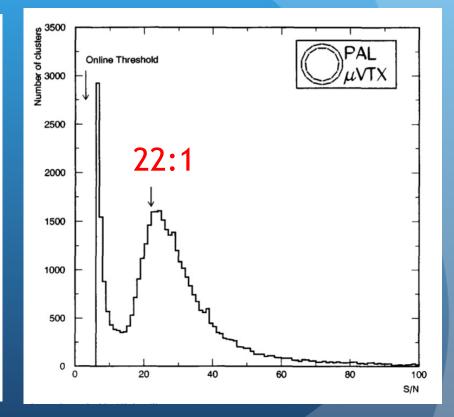

Two layers single-sided silicon devices separated by 14mm 11 inner and 14 outer ladders


Dimensions: 33 x 60mm Thickness: 300µm Strip pitch: 25µm Readout: 50µm, 629 channels



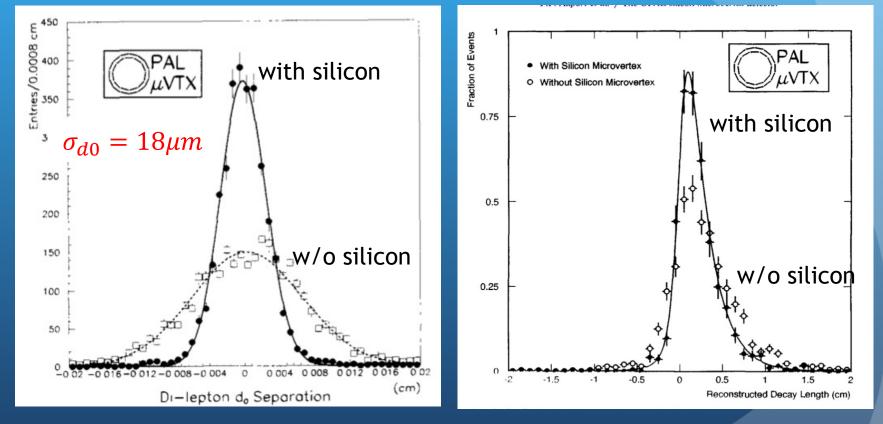






Dilepton events

Ladder hit efficiencies

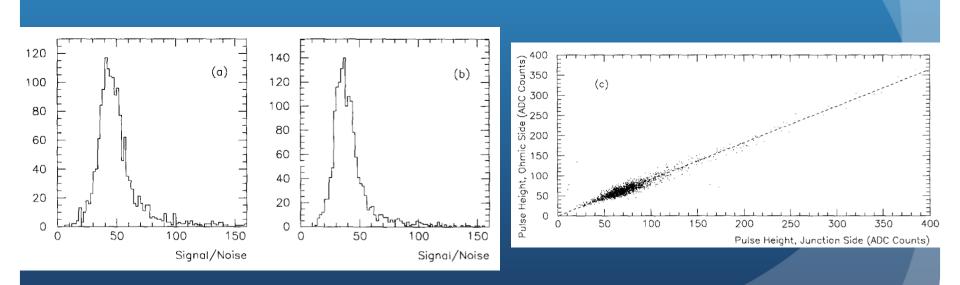


Signal/Noise

Dilepton separation at interaction point

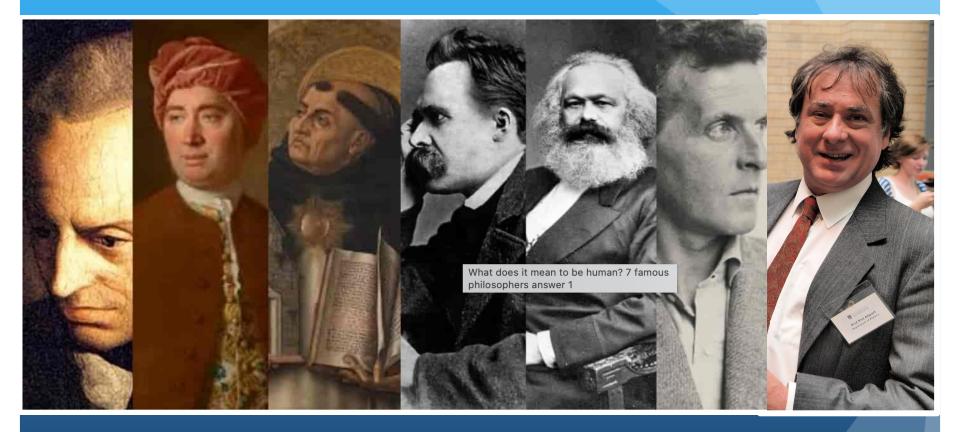
Decay length 3-prong τ decays

Nuclear Instruments and Methods in Physics Research A 348 (1994) 416-420 North-Holland


Double-sided FoxFET biased microstrip detectors

P.P. Allport ^{a,*}, J.R. Carter ^a, U.C. Dunwoody ^a, V. Gibson ^a, M.J. Goodrick ^a, G.A. Beck ^b, A.A. Carter ^b, A.J. Martin ^b, T.W. Pritchard ^b, M.A. Bullough ^c, N.M. Greenwood ^c, A.D. Lucas ^c, C.D. Wilburn ^c

^a Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK


^b Queen Mary and Westfield College, University of London, Mile End Road, London, UK

^c Micron Semiconductors Ltd, Marlborough Road, Lancing, Sussex, UK

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS

Philosophy and Physics

Philosophy and Physics

<u>Synthese</u> 94 (2):245 - 290 (1993)

P. P. ALLPORT

ARE THE LAWS OF PHYSICS 'ECONOMICAL WITH THE TRUTH'?*

Philosophy and Physics

<u>Synthese</u> 94 (2):245 - 290 (1993)

P. P. ALLPORT

ARE THE LAWS OF PHYSICS 'ECONOMICAL WITH THE TRUTH'?*

"Happy memories of a warm-hearted man and very astute about philosophy, not just philosophy of physics: a very welcome participant in the 1990s philosophy of physics seminars run in the Cambridge history and philosophy of science department.

I recall he wrote a super paper on the nature of fundamental physics (as a critique of views of Cartwright); with super quotes eg Nietzsche and Camus. It is a most excellent essay!" Jeremy Butterfield 2023

Nuclear Instruments and Methods in Physics Research A 346 (1994) 476-495 North-Holland NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

The OPAL silicon strip microvertex detector with two coordinate readout

P.P. Allport ^{a,1}, J.R. Batley ^a, G.A. Beck ^e, A.A. Carter ^e, J.R. Carter ^a, S.J. de Jong ^e, E. do Couto e Silva ^d, J.E. Duboscq ^b, U.C. Dunwoody ^a, V. Gibson ^a, W. Glessing ^b, P.R. Goldey ^f, M.J. Goodrick ^a, R. Hammarström ^b, G.G. Hanson ^d, A.K. Honma ^{i,2}, R. Humbert ^c, F. Jacob ^h, M. Jimenez ^b, D.S. Koetke ^b, J.F. Kral ^{b,3}, P. Kyberd ^e, J.A. Lauber ^b, C. Leroy ^g, A.J. Martin ^e, J.P. Martin ^g, R. Mir ^d, C. Moisan ^g, D. Petry ^c, T.W. Pritchard ^e, Ö. Runolfsson ^b, D.R. Rust ^d, P. Seller ^h, T.G. Shears ^a, D. Voillat ^b, M. Yurko ^g

^a Cavendish Laboratory, Cambridge, CB3 0HE, UK

^b CERN, European Organisation for Particle Physics, 1211 Geneva 23, Switzerland

^c Fakultät für Physik, Albert Ludwigs Universität, D-79104 Freiburg, Germany

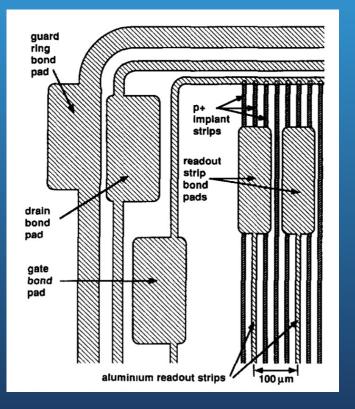
^d Indiana University, Dept. of Physics, Swain Hall West 117, Bloomington, Indiana 47405, USA

^e Dept. of Physics, Queen Mary and Westfield College, University of London, London, E1 4NS, UK

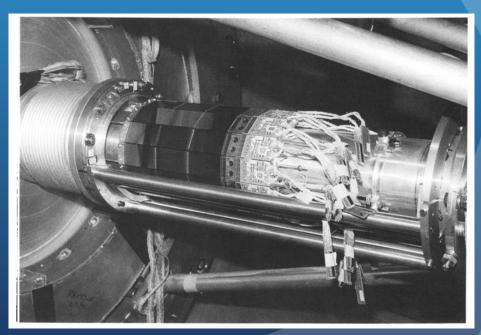
^f Department of Physics, University of Maryland, College Park, Maryland 20742, USA

⁸ Laboratoire de Physique Nucléaire, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada

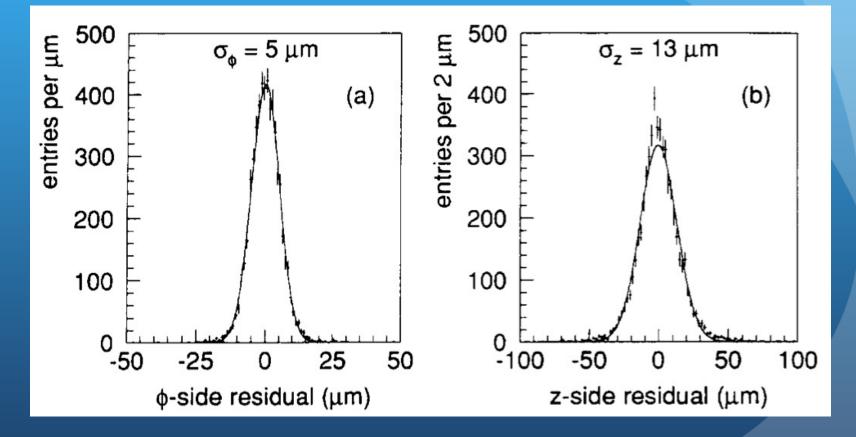

^h Rutherford Appleton Laboratory, Chilton, Dudcot, Oxfordshure, OX11 0QX, UK


¹ University of Victoria, Dept. of Physics, P.O. Box 3055, Victoria, BC, V8W 3P6, Canada

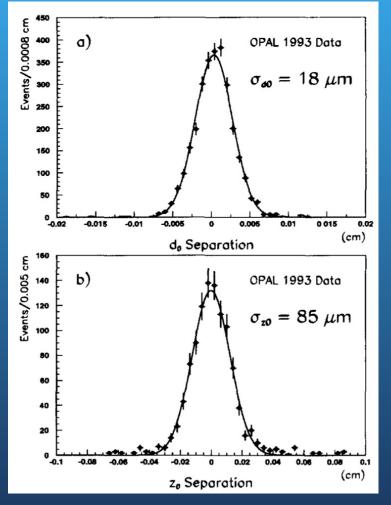
(Received 15 February 1994)

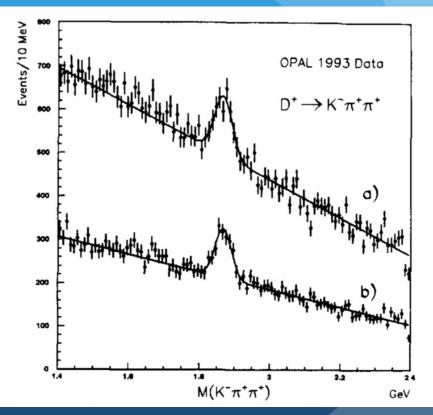

Installed and commissioned by March 1993

Thickness: 250μm Readout: r-φ: 50μm r-z: 100μm



z readout routed via gold printed circuit on thin glass substrate




Single hit resolutions

Dilepton separation at interaction point

Effect of z-hit information on $D^+ \rightarrow K^- \pi^+ \pi^+$ invariant mass

The final extended silicon micorvertex detector was installed in OPAL for the 1995 LEP2 running.

The "Waldegrave visit" 1995...

The "Waldegrave visit" 1995...

Phil led the development of silicon microvertex detectors and their readout prior to, during and following the era of LEP.

Without Phil, the OPAL microvertex detectors and the physics that came from them (τ and b-hadron lifetimes and identification of b-hadron decays etc) simply would not have been possible.

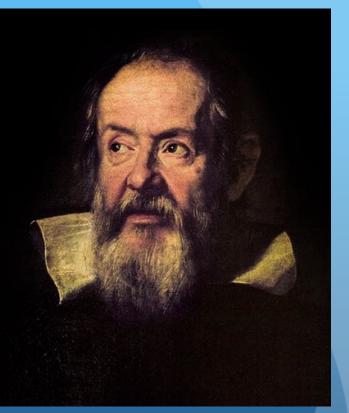
Phil led the development of silicon microvertex detectors and their readout prior to, during and following the era of LEP.

Without Phil, the OPAL microvertex detectors and the physics that came from them (τ and b-hadron lifetimes and identification of b-hadron decays etc) simply would not have been possible.

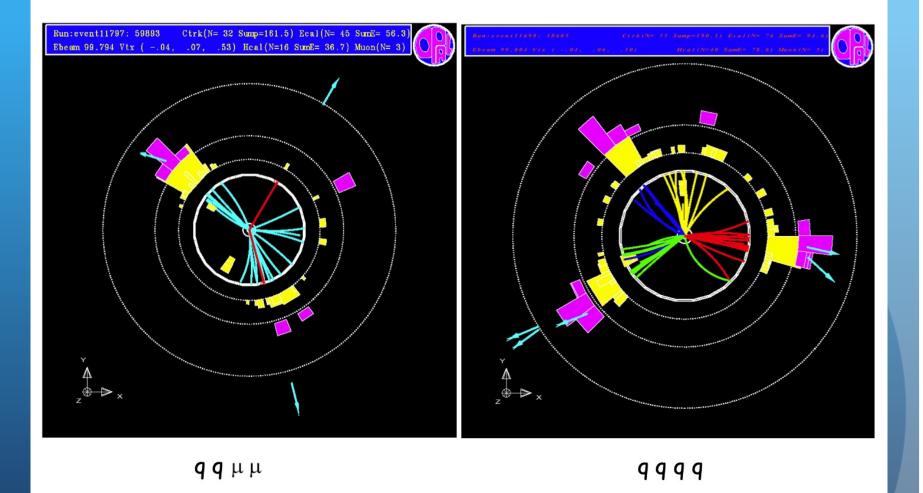
Thank you Phil for being a friend and colleague over the past 40 years.

Phil led the development of silicon microvertex detectors and their readout prior to, during and following the era of LEP.

Without Phil, the OPAL microvertex detectors and the physics that came from them (τ and b-hadron lifetimes and identification of b-hadron decays etc) simply would not have been possible.


Thank you Phil for being a friend and colleague over the past 40 years.

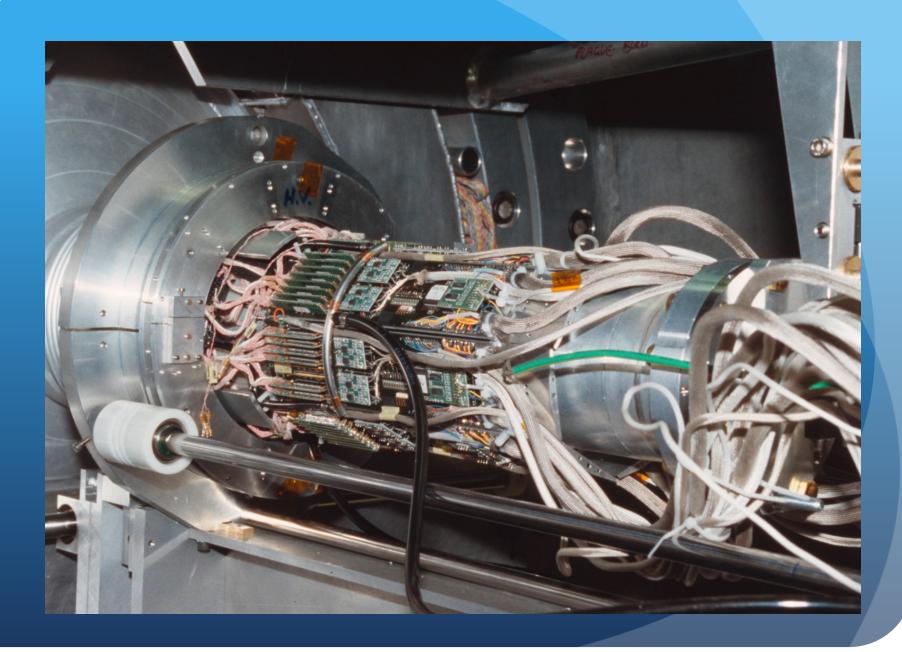
Janet (and Tony) Carter would have liked to be here today....


"We owe so much to Phil as an extremely talented and likeable colleague."

All **truths** are easy to understand once they are discovered; the point is to **discover them.**

– Galileo Galilei

...and to discover truths you need the best experimental scientists like Phil!



Characteristics of OPAL µVTX2 Ladders

ϕ side	z side
250	250
25	25
50	100
≈ 5	≈ 13
629	584
24	20
	250 25 50 ≈ 5 629

Characteristics of the new OPAL microvertex detector

μVTX2 parameter	Value		
Number of ladders/layer	11 (inner), 14 (outer)		
Effective radius of layer [mm]	61 (inner), 75 (outer)		
maximum $ \cos \theta $ acceptance	0.83 (inner), 0.77 (outer)		
ϕ acceptance	88% (inner), 91% (outer)		
Avg. material [rad. lengths]	1.5% at normal incidence		
Strip biasing method	FoxFET (gated reachthrough channel)		
2 coord. detection	back-to-back ϕ and z single-sided detectors		
z readout scheme	gold printed circuit on 200 µm thick glass		
Number of active channels	30325		
Readout chip, noise, power	MX7, $350 e + 15 e/pF$, 2 mW/channel		
Radiation hardness	about 500 Gy (MX7 chip)		
Cooling method	water cooling		
Number of good channels	≈ 99%		

