Protons, Perspex and Cancer OPTIma

Nigel M Allinson, MBE UNIVERSITY OF LINCOLN

Allport-Fest – XXVII - II - MMXXIII

gow.epsrc.ukri.org				·····································			
Gmail	OPTIma ProjeII Do	Buy Plants Onlant	lant Nursery House of Lorct Committee				
	🔀 Basic T	echnology	/: M-I3 - Multidimensi	ensional Integrated Intelligent Imaging			
nal Int	egrated Intelli	gent In	naging				
French, Mr MJ				Faruqi, Dr A			
Saxon, Professor DH				El-Gomati, Professor M			
Houston, Professor N				Cossins, Professor AR			
Dr R Turchetta							
	larchetta						
Ends:	28 February	y 2009		Va	lue (£):	4,411,980	
Image & Vision Co				uting			
n Grant	Application Form	n					

Active Pixel Sensors (APSs), based on the predominant CIVICS technology, are revolutionising the commercial world of solid-state imaging. This research programme,

A 54mm x 54mm – 1.8Megapixel CMOS Image Sensor for Medical Imaging

Andy T. Clark, Nicola Guerrini, Nigel Allinson, Member, IEEE, Sarah E. Bohndiek, Jamie Crooks, Tim Pickering and Renato Turchetta, Member, IEEE

MI-3's Remit To exploit Active Pixel Sensors for Scientific, **Medical and Security**

Successful enough for EPSRC to ask us to submit a follow on proposal

MI-3 Plus Produce wafer-scale CMOS imager for the healthcare sector

DynaMITe **Dynamic Range Adjustable for Medical Imaging Technology**

- sizes in one device

Third Largest supplier of Scientific CMOS Imagers and Systems

End of Preamble

Why Work with HEP Guys?

"Once you have a collider, every problem starts to look like a particle."

1. They find this cartoon amusing

2. Drink coffee out of mugs like this

Given the 121500 micron overall width and an edge distance of 500 microns gives the sensitive width can be 120500 microns.

If we go with 188.3 microns pitch then this could be 640 strips of 320 in each sector. (I therefore suggest 64 channel chips.) Note for the diagonal this means the wider ones would also be 320 strips but the narrow pair would be 180 strips so one chip would still need to be bonded to two sensors at a boundary between sensors.

(Alternatively could go for 235 micron pitch but then would need to check what pitch is reasonable and backplane capacitance starts to be higher.)

I also did a bit of calculation of capacitance and I do think we want to make the strips as reasonably narrow as we can so believe we can get away with roughly 70 micron width so the half gap is ~60 microns compared with 150 microns thickness.

(This is similar to the outer regions of the LHCb strip sensor.)

3. Give answers like this

The Big "C"

Over 18 million new cancer cases per year worldwide

Over 375,400 new diagnosis of cancer in the UK each year

One in two of us will have a diagnosis of cancer sometime in our life

Survial rate is about 50%

Single major cause of death for children between 2 and 15

Treatment

Surgery

Radiotherapy

Chemotherapy

Bragg peak

X-ray radiotherapy

Proton radiotherapy

Healthy tissue

²⁰ Depth into tissue (cm)

The advantage and the problem

Protons Do stop, just not certain where

Matthe Hant

Never stop

- Treatment planning based on x-ray CT
- x-rays and protons behave differently in matter
- Even with calibration, there are uncertainties
- Typical range error is ±3.5%

- For an individual proton, record entry and exit trajectories and its residual energy
- Estimate entry and exit points on reconstruction volume
- Calculate maximum likelihood path through patient and energy lost through patient...

Residual energy-resolving detector RERD

- Repeat for about million protons per projection
- Rotate about one degree, and repeat
- Repeat to cover full 180 degrees

PRaVDA Strip Sensors

About 90 mm square *n*-in-*p* silicon segmented into 2,048 strips, with 1,024 readout on each side of the detector pitch of 90.8 µm

x - outputs

u-outputs

sindino . 1

Partially assembled tracker unit

Three equi-rotated layers

ASIC – Rhea

Imaging mode Every proton detected Unto 4 protons per cycle

Treatment mode

Specified fraction of protons detected Profile histograms to provide sufficient information for control feedback

The trackers

4x Housing

12x Hybrids

12x Camera Boards

> 12x Stiffener

4x Mux Boards

> 4x **HV Unit**

130

2x CL Cable

Tracking detectors

Image reconstructions: Pac-man collimator (29 MeV Birmingham)

Four proton trackers – iThemba Proton Therapy Vault

* TATE - Thing At The End

.

welcometrust

University of Birmingham BlueBEAR HPC cluster and GridPP

Strip Trackers 4 banks of three 10 cm x 10 cm Silicon strip detectors 100 um pitch 150 um thickness

SuSi

Range Telescope 24 layers CMOS images - each: 20 um epi 700 um substrate 200 um pitch (512 x 512 pixels) 1 mm perspex 1 cm separation

rangetelcapacitors10Dose

Telescope

OPTIMA Slow Work in Progress

ASIC Designed and supplied by ISDI Ltd

Wafer Probing

Just starting - at last

Distort Time

~10 ns

Summary

- 24,576 strip channels sampled *simultaneously* at times as short as 1 ns
- Adjustment of individual channel timing at 78 ps resolution
- Can operate with beam current of up to ~30 pA (3 protons average per cycle)
- Up to 7 protons fully tracked across 12/16 layers per cycle
- Syncronise to any cyclotron or free-run at up to 125 MHz
 - Little time for any *intelligence* do cope with split events and synronise with beam spot position to reduce potential noise
- Calibrate all channels in a few mins

University of Lincoln

Grainne Riley Chris Waltham Michela Esposito

University of Birmingham

Phil Allport David Parker **Tony Price Ben Phoenix**

University of Liverpool

Jon Taylor Gianluigi Casse, Tony Smith, Ilya Tsurin

University of Surrey Phil Evans

University of Warwick

Sam Manager Jon Duffy

Karolinska University Hospital, Sweden

Gavin Poludniowski

University of Cape Town

Steve Peterson

University Hospital Birmingham NHS Foundation Trust Stuart Green

University Hospital Coventry and Warwickshire NHS Trust Spyros Manolopoulos

iThemba LABS, SA Jaime Nieto-Camero Julian Symonds

E

PT

Ran MacKay Adam Aitkenhead

University Hospital Birmingham NHS Foundation Trust Stuart Green

University of Lincoln

Grainne Riley Chris Waltham Michela Esposito art Vorselaars Amir Badiee Val Andrews

University of Birmingham

Phil Allport **Alastair Winter Tony Price** John Cotterill Simon Pyatt

University of Manchester

Karen Kirkby **Michael Merchant** Carla Winterhalter Mike Taylor Hywel Owen Alex Herrod

Christie Hospital NHS Foundation Trust

Paul Scherrer Institut Tony Lomax

Psoroulas Serena

È **Acknowledgements**

1SDI Ltd S

Commer

- er Thalis Anaxagoras artn
 - Andre Fant
 - Przemyslaw Gasiorek
 - Michael Koeberle

aSpect GmbH cia

- Marcus Verhoeven
- **Daniel Welzig**
- Daniel Schöne
- Frank Lauba

