W and Z +jets Measurements

IOP Half Day Meeting on VBF, Oxford February 2011

Contents

- Tevatron running
- Inclusive Z from Tevatron
- Z+jets from Tevatron
- W+jets from Tevatron
- Z/W+jets from ATLAS
- Z/W+bjets
- Summary

Tevatron

Collider Run II Integrated Luminosity

9 fb⁻¹ now recorded by each experiment

Measurements In this talk based on $\leq 6 \text{ fb}^{-1}$

Expect ~10 fb⁻¹ per experiment recorded by September 2011

Inclusive Z

proton q z ⁰	$\frac{\partial \gamma}{\partial r}$	Section		
antiproton	e- e	μ		
er observed events	4242	1785		
ed Bkg events	62 ± 18	13 ±13		
tance	0.3182 ± 0.0040	0.1392 ± 0.0027		
су	0.713 ± 0.012	0.713 ± 0.015		
osity	72.0 ± 4.3 pb ⁻¹	72.0 ± 4.3 pb ⁻¹		
$\sigma_{\gamma^*/Z}(\mu) = 24$	48.0 ±5.9 stat ± 7.6 syst ±	14.9 lum (pb)		
	proton q z^{0} antiproton \overline{q}	proton q^{-20} e^+ antiproton $e^ e$ or observed events 4242 ed Bkg events 62 ± 18 tance 0.3182 ± 0.0040 cy 0.713 ± 0.012 sity $72.0 \pm 4.3 \text{ pb}^{-1}$ $\sigma_{\gamma^*/Z}(\mu)$ $248.0 \pm 5.9 \text{ stat} \pm 7.6 \text{ syst} \pm 5.5 syst$		

 $\sigma_{\gamma^*/Z}$ (e+ μ) 254.9 ±3.3 stat ± 4.6 syst ±15.2 lum (pb)

NNLO @ \sqrt{s} =1.96 TeV: 251.3 \pm 5.0 pb (Stirling, van Neerven)

Good agreement between SM and data Data errors dominated by 6% lumi uncertainty

- •Test of pQCD in multijet environment
- Presence of W/Z ensure high perturbative scales
- Precise theory predictions
- Clean environment: leptonic final state
- provides clean signature, low BG
- High statistics allows precision tests
- Test of MC Models
- Key sample to validate available MC tools using experimental data

Main measurement is Z+jets due to ease of measurement. Some older results on W+jets

- Preliminary Results 6 fb-1 Measurements are performed in the kinematic range defined as:
- 2 electrons with $E_{T} > 25$ GeV:

One central e, $|\eta_e| < 1.0$, Second $e|\eta_e| < 1.0$ or $1.2 < |\eta_e| < 2.8$ OR 2 central muons , $|\eta_\mu| < 1.0$, with $P_T > 25$ GeV

Measurements are defined for hadron level:

- Z mass window: 66 < M_{ee} < 116 GeV/ c^2
- ∆*R*(*e*,jet) > 0.7
- Jets are reconstructed using the MidPoint algorithm with R=0.7with p_T jet > 30 GeV/c and $|y_{jet}| < 2.1$
- Theory NLO MCFM : CTEQ6.1M $\mu = M_Z^2 + p_T^2(Z)$
- Corrected hadronisation and Underlying Event, estimated from Pythia -Tune A

Good agreement with NLO

CDF Z+jets (2 jets)

Z→ee

D0 Z+jets

(qd) |_z/|p/op DØ Run II, L=1.0 fb¹ ---- Data NLO pQCD + corr. $\mu_{_{\mathbf{P}}} = \mu_{_{\mathbf{F}}} = \mathbf{M}_{_{\mathbf{Z}}} \oplus \mathbf{p}_{_{\mathbf{T}}}^{\mathbf{Z}}$ CTEQ6.6M PDF ALPGEN $\mu_{\rm B} = \mu_{\rm F} = \mathbf{M}_{\rm Z} \oplus \mathbf{p}_{\rm T}^{\rm Z}$ CTEQ6.1M PDF (a) $Z/\gamma^* (\rightarrow \mu \mu) + jet + X$ $65 < M_{uu} < 115 \text{ GeV}, |y^{\mu}| < 1.7$ $R_{cone}=0.5, p_{T}^{jet} > 20 \text{ GeV}, |y^{jet}| < 2.8$ Ratio 🕇 Data / ALPGEN SHERPA / ALPGEN NLO pQCD / ALPGEN **PYTHIA / ALPGEN** 2 Scale and PDF unc. (b) 1.8 1.4 1.2 0.4 0.8 1.2 1.8 $|\mathbf{y}^{\mathbf{Z}}|$

LIVERSITY OF

H

- •Good agreement with NLO
- •Alpgen shape reasonable
- •Some differences for SHERPA and PYTHIA

DO Z+jets (2nd jet)

D0 Z+jets (3rd jet)

CDF W+jets

W→ev

Good agreement with NLO and LO shape

ATLAS Z+jets

Good agreement with NLO and shape of ALPGEN+SHERPAPYTHIA way off

ATLAS W+jets

•Good agreement with NLO and shape of ALPGEN+SHERPA •PYTHIA way off

Z+b-jet Results

	CDF Data	PYTHIA	ALPGEN	HERWIG	NLO	NLO
E _T <20 GeV, η <1.5						+U.E+hadr.
$\sigma(Z + b \text{ jet})$	$0.86 \pm 0.14 \pm 0.12 \text{ pb}$	—	_	_	0.51 pb	0.53 pb
$\sigma(Z + b \operatorname{jet}) / \sigma(Z)$	$0.336 \pm 0.053 \pm 0.041\%$	0.35%	0.21%	0.21%	0.21%	0.23%
$\sigma(Z + b \operatorname{jet}) / \sigma(Z + \operatorname{jet})$	$2.11 \pm 0.33 \pm 0.34\%$	2.18%	1.45%	1.24%	1.88%	1.77%

• CDF Good agreement with PYTHIA, but ALPGEN, HERWIG, NLO a little low

- \bullet NLO calculated with MCFM ~2 σ lower than data so not very big disagreement
- D0 Measurement agrees well with NLO (MCFM 1.85%)

 $\sigma(Z+bjet) / \sigma(Z+jet) = 1.93 \pm 0.27\%$ for $E_T^{jet} > 20 \text{ GeV}, |\eta| < 2.5.$

D0 Also agree with CDF!

Z+bjets differential distributions

W+bjets

Vertex Mass Fit GeV/c² CDF Run II Preliminary - 1.9/fb ٠ Data **CDF** Measurement bottom contribution charm contribution .075 070 070 2.74±0.27±0.42 pb LF contribution Summed contribution b = 71.3 ± 4.7(stat) ± 6.4(syst) % is above NLO QCD prediction c = 15.9 ± 5.5(stat) % 50 LF = $12.6 \pm 3.5(stat) \%$ 40 KS Prob = 84.8 % 1.22±0.14 pb 30 20 No real understanding yet. 10 ^{3.5} ⁴(Ge^{4.5}/c²) 2.5 0.5 1.5 2

3

1

Summary

- CDF+D0 have made precise differential measurements of W/Z+jets
- Experimental accuracy <10% (dominated by hadron energy scale)
- NLO QCD describes all the data with an accuracy of around 10%
- ALPGEN described shape of Tevatron data
- First results from LHC show good agreement with NLO and shape of ALPGEN+SHERPA
- PYTHIA not sufficient to describe LHC data
- Z+bjets reasonably well described by NLO QCD
- W+bjets data is in excess of NLO QCD