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‣ A long-standing problem in QCD was how to systema1cally account for long-distance 

effects in processes involving for example energe1c light par1cles with momentum  

which has some large components but . What is there to integrate out? 

‣ One can introduce a small expansion parameter  and define two light-like 

reference vectors along the jet direc1ons  with 

. 

‣ Decompose 4-vectors in a light-cone basis spanned by  and two perpendicular 

direc1ons    

pμ

p2 ≈ 0

λ ∼ mJ / s ≪ 1

nμ
− = (1,0,0,1), nμ

+ = (1,0,0, − 1)

n2
− = 0, n2

+ = 0, n− ⋅ n+ = 2

nμ
−, nμ

+

pμ = (n− ⋅ p)
nμ

+

2
+ (n+ ⋅ p)

nμ
−

2
+ pμ

⊥

So8-Collinear Effec)ve Theory (SCET)
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‣ If one considers, for example, two back to back light jets 

‣ partons inside jet 1:  , collinear (or -collinear) par1cles 

‣ partons inside jet 2: , an1-collinear (or -collinear) 

par1cles 

‣ (an1-)collinear par1cles have virtuali1es much lower than the hard scale , 

 

‣ But in virtual diagrams hard par1cles can be also exchanged   

‣ We can integrate out the hard quantum fluctua1ons of QCD fields, but this is not the all story, 
sof modes are also present. Construct an EFT where the hard modes are integrated out, sof 
and (an1-)collinear modes are present in the theory (introduc1on to SCET arXiv:1410.1892).

(n− ⋅ pi, n+ ⋅ pi, p⊥
i ) ∼ (λ2,1,λ) s n

(n− ⋅ pi, n+ ⋅ pi, p⊥
i ) ∼ (1,λ2, λ) s n̄

s

p2
i = (n− ⋅ pi)(n+ ⋅ pi) + p2

⊥,i ∼ λ2 s

pμ
i ∼ (1,1,1) s

So8-Collinear Effec)ve Theory (SCET)

n− ⋅ pJ1
= E1 − E2

1 − m2
J1

≃
m2

J1

2E1
≃

m2
J1

s
∼ λ2 s n+ ⋅ pJ1

= E1 + E2 − m2
J1

≃ 2E1 ≃ s p⊥
J1

= 0
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Figure 10: Schematic representation of the scale separation and of the calculational procedure in
renormalization group improved perturbation theory.

called Renormalization Group Improved Perturbation Theory. The large logarithm counts

as 1/αs, as it can be seen from Eq. (5.11) remembering that β(αs) ∼ α2
s.

We observe that the fixed order expression of the Wilson coefficient C̃V (Eq. (5.5)),

becomes meaningless when µ" Q or µ# Q, since in these cases the logarithms are large

and the product αs ln(Q2/µ2) ∼ 1 cannot be used as an expansion parameter. In contrast,

if µh is taken approximately equal to the scale Q, the expression in Eq. (5.9) is valid for

any value of µ for which αs is perturbative.

5.2 Resummation

In the case of the Sudakov form factor, we integrated out the hard contribution and ab-

sorbed it in the Wilson coefficient C̃V
(
Q2, µ2

)
, but the decoupling also allows us to factorize

soft and collinear interactions, as it is shown in Fig. 7. The complete form factor can then

be written as

F
(
Q2, L2, P 2

)
= C̃V

(
Q2, µ2

)
J
(
L2, µ2

)
J
(
P 2, µ2

)
S
(
Λ2
s, µ

2
)
, (5.17)

where the J ’s are the collinear functions and S is the soft function characterized by the

scale Λ2
s = L2P 2/Q2.

Above, we have resummed logarithms in the hard function by solving its RG equation.

To achieve the resummation for the entire form factor, one solves the RG for each of the

terms in the r.h.s. of Eq. (5.17). All of them fulfill a RG equation of the same type as

the one satisfied by the Wilson coefficient. Therefore, each factor in Eq. (5.17) can be

calculated perturbatively at its own characteristic scale, and then evolved to a common

reference scale µ. The procedure is summarized in Fig. 10. Since each factor is evaluated at

its own natural scale, no large logarithms are present in the perturbative calculations; all

of the large logarithms are resummed in the evolution factors originating from the solution

of the RG equations.

The factorization formula puts constraints on the anomalous dimensions governing the

RG equation of the various factors in Eq. (5.17). The final result must be independent of

– 51 –

p l

F (Q2, L2, P 2)

=

C̃V (Q2)

J (P 2) J (L2)

S(Λ2
s)

+O
(
λ2
)

Figure 7: Diagrammatic representation of the Sudakov form factor in QCD; the diagrams illus-
trates the separation of the different scales present in the problem. The soft scale is Λ2

s = L2P 2/Q2.

Since

γµ = n/
n̄µ

2
+ n̄/

nµ

2
+ γµ⊥ , (4.63)

the only component surviving in Eq. (4.61) is γ⊥. When applying the decoupling transfor-

mations

χc(x) → Sn (x−)χ
(0)
c (x) ,

χc̄(x) → Sn̄ (x+)χ
(0)
c̄ (x) , (4.64)

the source term becomes

Jµ(x) =

∫
ds

∫
dtCV (s, t)χ̄

(0)
c (x+ sn̄)S†

n (x−)Sn̄ (x+) γ
µ
⊥χ

(0)
c̄ (x+ tn)

=

∫
ds

∫
dtCV (s, t)χ̄

(0)
c (x+ + x⊥ + sn̄)S†

n (0)Sn̄ (0) γ
µ
⊥χ

(0)
c̄ (x− + x⊥ + tn) + . . .

(4.65)

In the second line, we have used the multipole expansion to drop power-suppressed depen-

dence on xµ ∼ (1, 1, 1/λ). The scaling follows because xµ is conjugate to the sum of a

collinear and an anti-collinear momentum. We see that the soft interactions do not cancel,

and the Sudakov form factor receives low-energy contributions which describe a long-range

interaction between the fast moving ingoing and outgoing quarks. The situation is sum-

marized in diagrammatic form in Fig. 7, where pµ ∼ inµ, lµ ∼ in̄µ, and the double lines

represent the soft Wilson lines.

Do the soft corrections factorize? It depends on the precise meaning that one attributes

to the word factorization. Unfortunately, there are two different definitions of the word

factorization which are employed in this context:

i) Factorization = scale separation. In the source term in Eq. (4.65) the pieces associated

to different scales are separated, so according to this definition the form factor is

factorized.

ii) Factorization = no low energy interactions. The two collinear sectors in Eq. (4.65)

interact through soft interactions. The form factor is not factorized in this sense.
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‣ Resumma1on program in EFT schema1cally 

‣ separa1on of scales (factoriza1on formula) 

‣ evaluate each single scale factor in fixed order perturba1on theory at 
a scale for which it is free of large logs 

‣ use Renormaliza1on Group (RG) equa1ons to evolve the factors to a 
common scale

Resumma)on

Large logarithmic correctionsLarge logarithmic corrections

● The partonic cross section for top pair (+Higgs,W or Z) 
production receives potentially large corrections from soft gluon 
emission diagrams

● Schematically, the partonic cross section depends on 
logarithms of the ratio of two different scales: 

● It can be that                 

● One needs to reorganize the perturbative series: Resummation

● The resummation of soft emission corrections can be carried 
out by means of effective field theory methods    
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MC event generators

‣ MC event generators are essen1al tools for par1cle physics phenomenology 

‣ They provide realis1c simula1ons: first principles QFT calcula1ons are combined 
with parton showers and hadroniza1on modelling 

‣ In order to have realis1c predic1ons in all corners of the phase space, resummed 
calcula1ons (matched to fixed-order predic1ons) are extremely relevant for MC 
event generators 

‣ State-of-the-art is the inclusion of partonic NNLO correc1ons. Several methods 
are available for colour-singlet processes (UNNLOPS, MiNNLOPS, GENEVA)
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N-JeFness and Factoriza)on

‣ N-jeiness resolu1on variables: given an M-par1cle phase space point with  

‣ The limit               describes a N-jet event where the unresolved emissions                         
can be either sof or collinear to the final state jets or ini1al state beams 

‣ Color singlet final state, relevant variable is 0-jeiness aka “beam thrust” 

‣ Cross sec1on factorizes in the limit              [Stewart, Tackmann,Waalewijn `09,`10], three 
different scales arise

M ≥ N

way of overcoming the problem is to adjust the free parameters of the smooth cone isolation

algorithm to reproduce the e↵ects of the fixed cone procedure so that a comparison is at

least feasible. A second viable possibility, which has been recently investigated in [10, 44],

is the introduction of a hybrid cone isolation procedure which is very similar in spirit to

the smooth cone isolation. In this case the theoretical calculation is initially carried out

using the smooth cone isolation with a small radius parameter Riso such that only a tiny

slice of phase space around the photon direction is removed. As second step, the fixed cone

isolation procedure with a larger radius R � Riso is applied to the events which passed

the smooth cone criterion. In other words one initially applies very loose smooth cone

isolation cuts which are then tightened by the fixed cone procedure. In this paper we use

both the smooth cone and the hybrid isolation procedures. The first method is used for the

comparison to the results obtained with the MATRIX code [26] in subsection 4.3, while the

second isolation requirement is instead used for the comparison to the LHC data in section

5. The precise values of the isolation parameters, the selection cuts and the set of parton

distribution functions (PDF) which are employed in our calculations will be specified in

the sections below.

3 Resummation in Soft-Collinear E↵ective Theory

The N -jettiness [25] resolution variable is used within the Geneva framework to discrimi-

nate between resolved emissions with di↵erent jet multiplicities. Given anM -particle phase

space point �M with M � N , it is defined as

TN (�M ) =
X

k

min
�
q̂a · pk, q̂b · pk, q̂1 · pk, . . . , q̂N · pk

 
, (3.1)

where the sum over k runs over all QCD partons and where q̂i = ni = (1,~ni) are light-like

reference vectors parallel to the beam and jet directions. The limit TN ! 0 describes a

N -jet event, where the unresolved emissions can either be soft or collinear to the final state

jets or to the beams. This observation translates into a factorization formula [23] for the

TN spectrum in this limit. In the case of color singlet final state processes (such as Drell-

Yan, HV , diphoton production,. . . ) the relevant resolution variable which is resummed to

NNLL0 accuracy is the 0-jettiness (beam thrust). Starting from the general definition in

(3.1), the expression for 0-jettiness is considerably simplified [25]

T0 =
X

k

|~pkT | e
�|⌘k�Y | , (3.2)

where |~pkT | and ⌘k are the transverse momentum and the rapidity of the emission pk. The

0-jettiness cross section for small T0 obeys a factorization formula which has been derived

in [23, 24] originally for Drell-Yan, but it holds for any final state color singlet production

process

d�SCET

d�0dT0
=
X

ij

H��

ij
(Q2, t, µ)

Z
dta dtbBi(ta, xa, µ)Bj(tb, xb, µ)S

✓
T0 �

ta + tb
Q

,µ

◆
, (3.3)
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T0 ! 0

where the sum runs over all possible qq̄ pairs ij = {uū, ūu, dd̄, d̄d, . . .}. The factoriza-

tion formula depends on the hard H��

ij
, soft S and beam Bi,j functions which describe

respectively the square of the hard interaction Wilson coe�cients, the soft real emissions

between external partons and the hard emissions collinear to the beams. The hard func-

tions H��

ij
(Q2, t, µ) are process dependent objects and contain the information on the Born

and virtual squared matrix elements. In order to achieve NNLL0 accuracy they need to be

known up to two loops. They are regular functions of the Mandelstam invariants Q2 = s

and t and can be extracted from the two loop squared amplitude expressions [45] after

subtracting the infrared (IR) poles as explained in detail in appendix A. Their explicit

analytic expressions has been implemented in a dedicated numerical routine and can be

found in the repository of the Geneva code. The Bi(t, x, µ) are the inclusive (anti)quark

beam functions [23]. They depend on the virtualities ta,b of the initial state partons i and j

annihilated in the hard interaction and on the momentum fractions xa,b which are written

in terms of the diphoton rapidity Y�� and on the diphoton invariant mass Q = M��

xa =
Q

Ecm

eY�� , xb =
Q

Ecm

e�Y�� , (3.4)

where Ecm is the hadronic center-of-mass energy. The beam functions are calculated as an

operator product expansion (similarly for Bj)

Bi(ta, xa, µ) =
X

k

Z
1

xa

d⇠a
⇠a

Iik

✓
ta,

xa
⇠a

, µ

◆
fk(⇠a, µ) . (3.5)

The perturbatively computable part of the above equation are the matching coe�cients

Iik(ta, za, µ) which describe the collinear virtual and real initial state radiation (ISR) emis-

sions. The function fk(⇠a, µ) represents the usual PDF for parton k with momentum

fraction ⇠a. The matching coe�cient Iik(ta, za, µ) were computed to NNLO accuracy in

[46]. S(k, µ) is the quark hemisphere soft function for beam thrust and it has been com-

puted to the required NNLO accuracy including the scale independent terms in [47] [AB:

Is this the correct reference?]

The hard, beam and soft functions which appear in (3.3) are single-scale objects and

are evaluated at their own characteristic scale

µH = Q, µB =
p
QT0, µS = T0 , (3.6)

so that no large logarithmic corrections are present in their fixed-order perturbative ex-

pansions. The resummation of large logarithms proceeds via renormalization group (RG)

evolution functions Ui(µi, µ) which evolve the hard, soft and collinear functions from their

own characteristic scale µi to a common scale µ. The resummed formula for the T0 spec-

trum is then given by

d�NNLL
0

d�0dT0
=
X

ij

H��

ij
(Q2, t, µH)UH(µH , µ)

�⇥
Bi(ta, xa, µB)⌦ UB(µB, µ)

⇤

⇥
⇥
Bj(tb, xb, µB)⌦ UB(µB, µ)

⇤ 
⌦
⇥
S(µs)⌦ US(µS , µ)

⇤
, (3.7)
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N-jettiness as jet-resolution variable

I N-jettiness is a good resolution parameter. Global physical observable
with straightforward definitions for hadronic colliders, in terms of beams qa,b

and jet-directions qj

TN =
2

Q

X

k

min
�

q1 · pk, . . . , qN · pk

 
) TN =

2

Q

X

k

min
�

qa · pk, qb · pk, q1 · pk, . . . , qN · pk

 

Jet 2

Soft

Soft Jet 1

e+ e�

1

2 Jet 2

Jet b Jet a

Soft

Jet 3

Jet 1b

a

1

32

p p

`�

`+

I N-jettiness has good factorization properties, IR safe and resummable at
all orders. Resummation known at NNLL for any N in SCET [Stewart et al. 1004.2489,

1102.4344]I TN ! 0 for N pencil-like jets, TN � 0 spherical limit.
I TN < T cut

N limits the activity outside the jets
Simone Alioli | GENEVA | DESY 3/6/2021 | page 6
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Monte Carlo implementa)on

‣ GENEVA [Alioli,Bauer,Berggren,Tackmann, Walsh `15], [Alioli,Bauer,Tackmann,Guns `16], [Alioli,Broggio,Lim, 
Kallweit,Ro]oli `19],[Alioli,Broggio,Gavardi,Lim,Nagar,Napoletano,Kallweit,Ro]oli `20-`21] combines 3 
theore1cal tools that are important for QCD predic1ons into a single framework 

‣ fully differen1al fixed-order calcula1ons, up to NNLO via 0-jeiness or  subtrac1on 

‣ up to NNLL` resumma1on for 0-jeiness in SCET or N LL for  via RadISH for colour singlet 
processes 

‣ shower and hadronize events (PYTHIA8) 

‣ IR-finite defini1on of events based on resolu1on parameters            (or ) and 

qT

3 qT

pcut
T

IR-safe definitions of events beyond leading-order

Fisrt step of any NNLO+PS: an IR safe definition of events with up to two extra
emissions. Using 0-jet and 1-jet resolution parameters for color singlets

I Emissions below T
cut

N
are unresolved ( i.e. integrated over) and the kinematic

considered is the one of the event before the extra emission(s).
I Emissions above T

cut

N
are retained and the kinematics is fully specified.

An M-parton event is considered a N-jet event, N  M , fully differential in �N

• power corrections in T
cut

N
due to phase-space projection.

• vanish for IR-safe observables as T
cut

N
! 0

Iterating the procedure, the phase space is sliced into jet-bins

Different choices are possible for the resolution parameters. Assume zero- and
one-jettiness if not explicitly stated. Simone Alioli | GENEVA | CERN TH WS 1/7/2020 | page 4

T cut
0

where the convolution between the di↵erent functions is written in schematic form. The

scale setting procedure will be explained in the next section where we will introduce the

profile functions which are employed to switch-o↵ resummation outside its kinematical

range of validity. At NNLL0 accuracy, we need to know the boundary conditions of the

evolutions, namely the hard, beam and soft functions up to NNLO accuracy, and the

cusp(non-cusp) anomalous dimensions up to three(two)-loop order. The expressions for the

anomalous dimensions to the required order can be found in [21, 48–51]. The gluon fusion

channel contribution is included in the present calculation only at fixed-order accuracy.

We leave for future work the resummation of this channel.

4 Implementation within the Geneva framework

In this section we briefly review the Geneva framework and present the implementation

of the diphoton production process within this Monte Carlo code by highlighting the main

di↵erences compared to the previous processes such as Drell-Yan [40] and HV production

[42]. We refer to [39, 40, 42] for more details on the general features of the Geneva method.

An event generator produces N -jet physical events where all of the IR divergences are

canceled on an event-by-event basis. TN is used as the N -jet resolution variable which

defines the Geneva Monte Carlo (MC) cross sections by including the contributions of all

the unresolved emissions below a certain resolution cuto↵ TN < T
cut

N
. In the present case,

exclusive cross sections for events with 0, 1 and 2 jets are defined by employing cuts on the

T0 and T1 resolution variables as

�0 events:
d�mc

0

d�0

(T cut

0 ) ,

�1 events:
d�mc

1

d�1

(T0 > T
cut

0 ; T cut

1 ) ,

�2 events:
d�mc

�2

d�2

(T0 > T
cut

0 , T1 > T
cut

1 ) . (4.1)

The jet definition used here, contrary to an ordinary jet algorithm, depends on a phase

space map �N (�M ) (with N  M) which projects the M -body phase space unresolved

emissions onto �N points. Using (4.1) the cross section for a generic observable X is

written as

�(X) =

Z
d�0

d�mc

0

d�0

(T cut

0 )MX(�0)

+

Z
d�1

d�mc

1

d�1

(T0 > T
cut

0 ; T cut

1 )MX(�1)

+

Z
d�2

d�mc

�2

d�2

(T0 > T
cut

0 , T1 > T
cut

1 )MX(�2) , (4.2)

where MX(�N ) is the measurement function that computes the observable X for the N -

parton final state point �N . The above defined cross section is not equivalent to a fixed

order calculation. Indeed for any unresolved emission the observable is computed on the

projected point �N (�M ) rather than the exact �M point. However the di↵erence vanishes

– 7 –

T cut
1
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in the limit T
cut

N
! 0, hence it is advisable to choose this cuto↵ as small as possible.

However, for this choice of the cuto↵, the cross section develops large logarithms of TN and

T
cut

N
which need to be resummed in order to obtain physically meaningful results. This is

done in Geneva to high accuracy order.

We start by analyzing the separation between the 0 and 1 jet events by employing as

discriminator the 0-jet resolution variable T0. We need to impose process defining phase

space restrictions for the diphoton production process in order to have finite cross sections.

In particular we require pT cuts on each of the photons and isolation dependent cuts (to

eliminate collinear QED singularities). Other cuts, such as on the photons rapidity or

invariant mass, can be imposed at the analysis level but they are not needed to definite IR

finite cross sections. To define this set of restrictions we use the symbol ✓PS
iso

(�N ) which act

on the �N phase space2 Depending on the final state jet multiplicity, we perform multiple

projections to the lower dimensional phase spaces in order to evaluate the resummed and

resummed expanded terms in the cross sections

�2 ! �1 ! �0 . (4.3)

Every projected configuration is required to fulfill the restrictions imposed by the set of

cuts on that particular phase space. In addition, if the projection is excluded by the cuts,

also the initial higher dimensional configuration is eliminated in the evaluation of the re-

summed and resummed expanded terms. We use the symbol ✓proj
iso

(�̃N ) (and ✓̄proj
iso

(�̃N ) for

its complement) to indicate a set of phase space restrictions acting on the higher dimen-

sional �N+1 phase space due to the cuts on the projected configuration �̃N . In practice

we start from a valid �N+1 phase space point, we project onto a �̃N point and apply the

cuts on this lower dimensional space. If the projected configuration doesn’t pass the �N

restrictions, then the initial �N+1 configuration is also excluded.

Since the resummation for the 0-jettiness is carried out at NNLL0 accuracy in Geneva,

which means that it contains all of the singular corrections in T0 up to O(↵2
s), we can write

the the 0 and 1 jet cross sections as

d�mc

0

d�0

(T cut

0 ) =
d�NNLL

0

d�0

(T cut

0 ) ✓PSiso (�0) +
d�nons

0

d�0

(T cut

0 ) , (4.4)

d�mc

�1

d�1

(T0 > T
cut

0 ) =
d�NNLL

0

d�0dT0
P(�1)✓

�
T0 > T

cut

0

�
✓PSiso (�1)✓

proj

iso
(�̃0) +

d�nons

�1

d�1

(T0 > T
cut

0 ) ,

(4.5)

where d�NNLL
0
/d�0dT0 is the resumed T0 spectrum and d�NNLL

0
/d�0(T cut

0
) is its cumula-

tive integral. In the above equation we introduced a splitting probability function P(�1)

which satisfies the normalization condition
Z

d�1

d�0dT0
P(�1) = 1 . (4.6)

2Notice that the Frixione isolation procedure doesn’t have any e↵ect on �0 events.
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we start from a valid �N+1 phase space point, we project onto a �̃N point and apply the

cuts on this lower dimensional space. If the projected configuration doesn’t pass the �N

restrictions, then the initial �N+1 configuration is also excluded.

Since the resummation for the 0-jettiness is carried out at NNLL0 accuracy in Geneva,

which means that it contains all of the singular corrections in T0 up to O(↵2
s), we can write

the the 0 and 1 jet cross sections as

d�mc

0

d�0

(T cut

0 ) =
d�NNLL

0

d�0

(T cut

0 ) ✓PSiso (�0) +
d�nons

0

d�0

(T cut

0 ) , (4.4)

d�mc

�1

d�1

(T0 > T
cut

0 ) =
d�NNLL

0

d�0dT0
P(�1)✓

�
T0 > T

cut

0

�
✓PSiso (�1)✓

proj

iso
(�̃0) +

d�nons

�1

d�1

(T0 > T
cut

0 ) ,

(4.5)

where d�NNLL
0
/d�0dT0 is the resumed T0 spectrum and d�NNLL

0
/d�0(T cut

0
) is its cumula-

tive integral. In the above equation we introduced a splitting probability function P(�1)

which satisfies the normalization condition
Z

d�1

d�0dT0
P(�1) = 1 . (4.6)

2Notice that the Frixione isolation procedure doesn’t have any e↵ect on �0 events.
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to make the T0 spectrum fully di↵erential in �1. The discussion follows similarly to the

Drell-Yan and HV production processes cases. The non singular contributions are given

by

d�nons
0

d�0

(T cut

0 ) =

(
d�NNLO0

0

d�0

(T cut

0 )�


d�NNLL

0

d�0

(T cut

0 )

�

NNLO0

)
✓PSiso (�0) , (4.7)

d�nons

�1

d�1

(T0 > T
cut

0 ) =
d�NLO1

�1

d�1

(T0 > T
cut

0 ) ✓PSiso (�1)

�


d�NNLL

0

d�0dT0
P(�1)

�

NLO1

✓PSiso (�1) ✓
proj

iso
(�̃0) ✓

�
T0 > T

cut

0

�
. (4.8)

The terms in squared brackets are the expanded expressions to O(↵2) of the resummed

cumulant and spectrum. After explicitly writing the FO contributions to the cross sections

we obtain

d�mc

0

d�0

(T cut

0 ) =

(
d�NNLL

0

d�0

(T cut

0 ) �


d�NNLL

0

d�0

(T cut

0 )

�

NNLO0

)
✓PSiso (�0)

+ (B0 + V0 +W0)(�0) ✓
PS

iso (�0)

+

Z
d�1

d�0

(B1 + V1)(�1) ✓
PS

iso (�1) ✓
proj

iso
(�̃0) ✓

�
T0(�1) < T

cut

0

�

+

Z
d�2

d�0

B2(�2) ✓
PS

iso (�2) ✓
�
T0(�2) < T

cut

0

�
, (4.9)

d�mc

�1

d�1

(T0 > T
cut

0 ) =

(
d�NNLL

0

d�0dT0
�


d�NNLL

0

d�0dT0

�

NLO1

)
P(�1) ✓

�
T0 > T

cut

0

�
✓PSiso (�1)✓

proj

iso
(�̃0)

+ (B1 + V1)(�1) ✓
PS

iso (�1)✓(T0(�1) > T
cut)

+

Z
d�T

2

d�1

B2(�2)✓
PS

iso (�2) ✓
�
T0(�2) > T

cut

0

�
, (4.10)

where B1 and B2 are the 1-parton and 2-partons tree-level contributions respectively. V0

and V1 correspond instead to the 0-parton and 1-parton one-loop contributions while W0

is the two-loop contribution. In the above equations we also introduced the notation

d�M

d�N

= d�M �[�N � �N (�M )] . (4.11)

Since the resummed and resummed expanded contributions are di↵erential in T0, the phase

space integration of the 2-parton contribution in (4.10) should be parametrized in terms

of T0. Indeed the projection d�T
2
/d�1 must use a map which preserves T0:

T0(�
T
1 (�2)) = T0(�2) . (4.12)
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0 ) �
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0
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0 )

�

NNLO0
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✓PSiso (�0)

+ (B0 + V0 +W0)(�0) ✓
PS

iso (�0)

+

Z
d�1

d�0

(B1 + V1)(�1) ✓
PS
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proj

iso
(�̃0) ✓

�
T0(�1) < T

cut

0

�
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Z
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(T0 > T
cut
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(
d�NNLL
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d�0dT0
�


d�NNLL

0

d�0dT0

�

NLO1

)
P(�1) ✓

�
T0 > T

cut

0

�
✓PSiso (�1)✓

proj

iso
(�̃0)

+ (B1 + V1)(�1) ✓
PS

iso (�1)✓(T0(�1) > T
cut)

+

Z
d�T

2

d�1
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PS

iso (�2) ✓
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where B1 and B2 are the 1-parton and 2-partons tree-level contributions respectively. V0

and V1 correspond instead to the 0-parton and 1-parton one-loop contributions while W0

is the two-loop contribution. In the above equations we also introduced the notation

d�M

d�N

= d�M �[�N � �N (�M )] . (4.11)

Since the resummed and resummed expanded contributions are di↵erential in T0, the phase

space integration of the 2-parton contribution in (4.10) should be parametrized in terms

of T0. Indeed the projection d�T
2
/d�1 must use a map which preserves T0:

T0(�
T
1 (�2)) = T0(�2) . (4.12)

In this way all of the terms in the inclusive 1-jet cross section (4.10) can be evaluated

at the same value of T0 and the pointwise cancellation of the singular T0 contributions is

achieved. The projection used in the third line of (4.10) is defined by

d�T
2

d�1

⌘ d�2 �[�1 � �T
1 (�2)]⇥

T (�2) , (4.13)
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P(Φ1) = 1



Alessandro Broggio    24/02/2023 11

Figure 3: Comparison between the NLL0 and NNLL0 resummed T0 distributions in the

peak region (left) and the corresponding nonsingular contribution (right).

avoided. In the case of diphoton production instead, the pT cuts on each photon are not

preserved by our mappings.8 Hence, these cuts applied to the projected e�0 configurations

will e↵ectively remove some contributions to the resummed and resummed-expanded terms

of the cross section formula in eq. (4.11) which are present in the usual resummed results

(i.e. without any recoil considered).

The di↵erence between the two procedures is shown in the left plot of Fig. 2 for

the resummed contribution alone, while the right plot shows the same comparison after

matching to fixed order. We observe good compatibility between the two curves even at

large T0, meaning that the di↵erence between the two approaches is eliminated at FO by

the matching procedure. We also observe larger fluctuations of the standard result at small

T0 values, likely due to combining the histogram bins of the matched calculation rather

than combining the contributions on an event-by-event basis as is done in Geneva.

We are now in a position to compare the e↵ects of the T0 resummation matched to

FO calculations by evaluating the cross section formulae in eq. (4.10) and eq. (4.11) at

di↵erent accuracies. In the left panel of Fig. 3 we compare the NLL0 and NNLL0 results

for the T0 distribution in the peak region. In the same figure we also show the nonsingular

contribution at NLO and NNLO in the same range of T0 on the right.

In the peak region, the two results at di↵erent resummation accuracies do overlap,

but we do not observe a substantial reduction of the resummation uncertainties. We also

notice that the nonsingular contribution at very small T0 values takes opposite signs at the

di↵erent orders. Its size also looks particularly large when plotted on a linear scale, as is

done in this plot (c.f. Fig. 1).

8In the case of a �2 ! �1 projection the complicated cuts due to the photon isolation procedure can

also not be preserved.

– 15 –

Figure 4: Comparison between the NLL0+NLO and NNLL0+NNLO matched T0 distribu-

tions in the peak (left), transition (centre) and tail (right) regions.

In Fig. 4 we instead plot the same resummed results matched to the appropriate FO

calculation, in the peak, transition and tail regions. As a consequence of the size of the

nonsingular corrections, the two curves only partially overlap for 1 < T0 < 2 GeV, close

to the peak. A similarly poor convergence was also observed for the p��
T

distribution after

performing the qT resummation (see Ref. [36]). Also in the tail and transition regions, the

e↵ect of including the NNLO corrections is large and the uncertainty bands do not overlap

with those at lower order. This was previously noticed in Refs. [20, 22, 26].

4.4 Subleading power corrections

In order to express the 0-jet cross section as in eq. (4.10), i.e. fully di↵erential in the �0

phase space one would need to implement a local NNLO subtraction method. However,

if power corrections below the resolution cuto↵ are kept negligible by a careful choice of

the cuto↵, a local subtraction is not explicitly needed. This is the case of the Geneva

approach, which is based on the N -jettiness subtraction [24, 25].

Moreover, even if a local subtraction were provided, the predictions of an event gener-

ator would be inherently correct only for the total cross section and for observables which

are left unchanged by the �1 ! �0 and �2 ! �1 ! �0 projections like, for example,

the diphoton invariant mass. Hence, the presence of power corrections in T
cut
0

cannot be

avoided for generic observables that depend on the �0 kinematics. We therefore replace

the formula for the 0-jet cross section in eq. (4.10) with

]d�mc
0

d�0

(T cut

0 ) =
d�NNLL

0

d�0

(T cut

0 ) �


d�NNLL

0

d�0

(T cut

0 )

�

NLO0

+ (B0 + V0)(�0)⇥
PS(�0)

+

Z
d�1

d�0

B1(�1)⇥
PS(�1)⇥

proj(e�0) ✓
�
T0(�1) < T

cut

0

�
, (4.20)

where the local subtraction and the expansion of the resummation formula are only needed

up to O(↵s). This formula assumes that there is an exact cancellation between the FO

– 16 –
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GENEVA vs  resumma)onqT

Figure 9: Comparison with Matrix+RadISH for the p��
T

distribution at di↵erent re-

summation accuracies. Geneva results before showering are shown on the left panel, after

showering but before hadronisation on the right panel.

labeled DIP-REC in the figures. Even after adding the shower e↵ects, in particular when

using the new recoil scheme, the Geneva results are in better agreement with those with

higher logarithmic accuracy.

4.8 Inclusion of the gg channel contribution

The e↵ects of including the gg channel contribution are quite large both for the total cross

section (in the 6–10% range) and the di↵erential distributions. This is a consequence of

the relative size of the gluon parton distributions at the LHC.

In Fig. 10 we compare the results of Geneva with Matrix after the inclusion of the

gg channel contribution for the same set of inclusive distributions presented in Fig. 6. As

shown in the plots, we find very good agreement between the two calculations. We also

show the e↵ect of including the gg channel contributions by comparing to the Geneva

results before its inclusion. Due to the numerical relevance of this channel, its NLO QCD

corrections have been the subject of dedicated studies [15, 17]. However, since these terms

are formally of higher order (N3LO) with respect to the qq̄ channel contribution, we neglect

them in our calculation.

When showering events in the gluon fusion channel, we set the starting scale of the

shower to be equal to the highest scale present in the process, which is the partonic centre-

of-mass energy. The reason for doing so is that we do not presently resum these contri-

butions, whose resummation accuracy is then entirely given by the shower. A dedicated

– 27 –

‣ Inclusive quan11es are not modified, changes are expected in exclusive observables 
‣ Shower recoil schemes large impact in predic1ons of colour singlet pT
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Comparison to ATLAS data LHC 7 TeV

2-loop top massive effects not yet included 
in qqbar channel. EW effects also important 

at high Mγγ

Hybrid isola1on procedure. 
Process-defining cuts at genera1on level

Figure 14: Comparison between Geneva + Pythia8 and the 7 TeV data from AT-

LAS [6]. The theoretical predictions have been produced by applying the Rivet analysis

ATLAS 2012 I1199269 to the hadronised events. We show the invariant mass of the photon

pair (top left), the transverse momentum of the diphoton system (top right), the azimuthal-

angle separation between the two photons (bottom left) and the cosine of the polar angle

in the Collins–Soper frame of the diphoton system (bottom right).

– 33 –

ATLAS [arXiv:1211.1913]

We first generate the events by applying the set of loose cuts in eq. (4.44) and, as a second

step, we analyse them by applying the tighter cuts of eq. (4.43) before showering. We

compare these predictions to the results obtained by directly applying the set of tight cuts

at generation level.

This is shown in Fig. 12 for the pseudorapidity of the softer photon and the T0 distribu-

tion, where we show the results of the calculation directly carried out with tight generation

cuts together with that where we apply loose generation cuts (as in eq. (4.44)) and tighter

cuts at the analysis level. The two predictions are in good agreement and this gives us

confidence that our results are not strongly dependent on the generation cuts applied.

For the second part, one should expect that power-suppressed e↵ects connected with

the recoil after any emission could modify the momenta of the final-state particles and,

consequently, result in a di↵erent rate of events passing the analysis cuts compared to

those passing the generation cuts. This e↵ect is particularly severe after the shower, since

multiple emissions can greatly reshu✏e the final-state momenta. The same applies to the

reshu✏e used by SMC programs to impose momentum conservation after hadronisation.

In order to quantify these e↵ects we compare in Fig. 13 results obtained employing the

loose generation cuts in eq. (4.44) with the values Riso = 0.1 and Riso = 0.15 and applying

the ATLAS analysis cuts which are introduced later in eqs. (5.2) and (5.3) of sec. 5.

The figure shows reasonable agreement between the two predictions for the transverse

momentum of the photon pair and the cosine of the photon angle in the Collins–Soper

frame, demonstrating that the size of these e↵ects is not large for variations of the isolation

radius at generation level. However, qualitatively we did find a stronger dependence of the

final results on the choice of the generation cuts on the photons’ transverse momenta.

5 Results and comparison to LHC data

In this section we compare our predictions against 7 TeV LHC data obtained from both

ATLAS [6] and CMS [10]. We employ the hybrid isolation procedure, as detailed in sec. 2

and sec. 4.9. This means that we first generate partonic events with looser smooth-cone

isolation cuts, and only after the shower and hadronisation procedures do we apply the

tighter analysis cuts and fixed-cone isolation algorithms which are used by the ATLAS and

CMS experiments.

For these particular comparisons, we generate events using the NNPDF31 nnlo as 0118

PDF set [94]. We set the FO scale to µFO = MT
�� and apply the following process-defining

cuts at generation level:

p�h
T

� 18 GeV, p�s
T

� 15 GeV, M�� � 1 GeV ,

Emax

T = 4 GeV, Riso = 0.1, and n = 1 . (5.1)

Note that, in principle, there is no need to require a lower limit on the invariant mass of the

photon pair, but, since our hard function is evaluated at µH = M�� in the resummation

region, we set this lower cuto↵ so that ↵s(µH) is not evaluated at scales which are too

small.

– 32 –
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Colour Singlet processes in Geneva
Drell-Yan (1508.01475, 2102.08390), VH (1909.02026), Photon pair (2010.10498),  (2105.13214),  

(2103.01214), single (2301.11875) and double (2212.10489) Higgs produc1on in gluon fusion
Wγ ZZ
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Figure 7: Comparison of the ATLAS data [64] with the Geneva+Pythia8 results at

13 TeV. We show the fiducial cross sections for di↵erent values of Njets (top left), as well

as the distributions of |yH | (top right), pH
T

(bottom left), and pj1
T

(bottom right).

to the point at which the T0 resummation is switched o↵, we find a more pronounced

discrepancy between the Geneva partonic and showered results. We have verified that

this is an artefact related to our choice of setting the T0 spectrum equal to the derivative

of the cumulant as explained at the end of sec. 2.3.

5 Comparison with LHC data

We compare the predictions obtained with Geneva with the latest experimental results for

the Higgs boson inclusive and di↵erential cross sections in the H ! �� decay channel. The

results are provided both by the ATLAS [64] and CMS [65] experiments, and are obtained

– 24 –

Figure 3: Comparison to ATLAS and CMS measurements from the LHC at 13 TeV. Selection cuts, bin widths and observable definitions are
as detailed in the original ATLAS [11] and CMS [16] publications.

Possible future directions for improvement for this calcu-
lation would be the inclusion of the NLO QCD corrections
to the gluon fusion channel and of the aforementioned NLO
EW corrections.

The code used for the simulations presented in this work
is available upon request from the authors and will be
made public in a future release of Geneva.
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Appendix A. Nonsingular power corrections

The Geneva calculation is based on N -jettiness sub-
traction, using a resolution cuto↵ T

cut
0

. The contributions
below the cut, given in eq. (2), require a local NNLO sub-
traction for their implementation. In Geneva, exploiting
the N -jettiness subtraction, we substitute the expression

6

ZZ production

gg → H
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Top-quark pair produc)on: factoriza)on & resumma)on

dσ
dΦ0dτB

= M ∑
ij={qq̄,q̄q,gg}

∫ dta dtb Bi(ta, za, μ) Bj(tb, zb, μ) Tr[Hij(Φ0, μ) Sij(MτB −
ta + tb

M
, Φ0, μ)]

We derived a factoriza1on formula (see 2111.03632 Appendix A) using SCET+HQET in the 

region where   are all hard scales. In case of boosted regime  
situa1on similar to [Fleming, Hoang,Mantry,Stewart `07][Bachu,Hoang,Mateu,Pathak,Stewart `21]

Mtt̄ ∼ mt ∼ ̂s Mtt̄ ≫ mt

Hard func1ons (color matrices)

Sof func1ons (color matrices)
Beam func1ons [Stewart, 

Tackmann, Waalewijn, [1002.2213], 
known up to N LO3

Resumma1on formula, non-diagonal evolu1on in colour space
the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)

– 13 –
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Matched results to fixed-order

Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.

– 20 –

Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.

– 22 –

Figure 1: Approximate fixed order results for the T0 distribution obtained from our

factorisation theorem compared with full calculations at LO (left) and NLO (right). The

approximate results correctly reproduce the fixed order behaviour in the T0 ! 0 limit.

cross section as a function of ⌧B relative to the fixed order calculation. This is shown at

LO1 and NLO1 accuracy in fig. 2. We see that the singular contribution to the cross section

becomes of a similar size to the fixed order when ⌧B is just above 0.2. The behaviour at

di↵erent orders is very similar. We therefore make the choices

y0 = 1.0GeV/M , {y1, y2, y3} = {0.1, 0.175, 0.25} . (4.3)

We now discuss the resummed results. In order to estimate the theoretical uncer-

tainties, we vary the central choices for the profile scales in eq. (4.1) independently while

keeping the hard scale fixed. This gives us four independent variations. In addition, we

consider two more profile functions where we shift all the yi transition points together by

±0.05 while keeping all of the scales fixed at their central values. Hence, we obtain in

total six profile variations. We consider the maximal absolute deviation in the results with

respect to the central prediction as the resummation uncertainty.

In fig. 3, we show the peak region of the resummed T0 distribution. We compare

predictions at di↵erent primed and unprimed levels of accuracy from NLL to NNLL0
a.

Examining the unprimed results, we see a large shift in the central value between the NLL

and NNLL results, though the central prediction for the NNLL result remains within the

scale uncertainty band of lower order calculation. We also observe that the size of the band

does not reduce substantially when moving from one order to the next. On the other hand,

comparing the NLL0 and NNLL0
a results we observe both a more stable central value and

– 19 –
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Sudakov resumma)on for WIMP Dark MaYer 
annihila)on

Based on arXiv:1805.07367 (M. Beneke, AB, C. Hasner, M. Vollmann) and 
arXiv:1903.08702 (M. Beneke, AB, C. Hasner, K. Urban, M. Vollmann) 
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Experimental approaches
Introduction 1-25

Figure 1.9: Depiction of the three kind of WIMP detection techniques.

pected scattering to ionisation, scintillation, light or phonons.
From the analysis of the movement of clusters of red giants (called red clumps) in
our galactic neighbourhood it is possible to infer the local dark matter density,
whose value is found to be ⇢0 = 0.542 ± 0.042 GeV cm�3 [140]. If we addi-
tionally assume that we (and our carefully designed laboratories) are moving
through the dark matter halo with a mean velocity of 220 km s�1 (the velocity
of our solar system with respect to the galactic center) and that dark matter is
composed of WIMPs, this would imply that (for a particle of mass M� ⇠ 100
GeV) a Øux of 105 dark matter particles crosses Earth every square centimetre
per second. Despite this large Øux, we expect a small rate due to the weak
interactions. The di�erential event rate is deÆned as [85]

dR

dEr

=
⇢0

MNM�

Z
vesc

vmin

vf(v)
d�

dEr

dv, (1.30)

where d�/dEr is the di�erential cross-section for the WIMP-nucleus elastic scat-
tering and f(v) is the WIMP speed distribution, the lower limit of the integration
is the minimum speed that can cause a recoil

vmin =

s
MNEr

2µ2
N

, (1.31)

where µN = MNM�/(MN+M�) and the upper limit is the escape velocity: the
maximum speed a WIMP can have in the MW before it breaks its gravitational
bound, vesc = 544 km/s [141]. The di�erential cross section in eq. (1.30) can be
separated into a spin-dependent (SD) and a spin-independent (SI) contribution

d�

dEr

=
MN

2µ2
N
v2

(F 2
SD(Er)�

SD
0 + F

2
SI(Er)�

SD
0 ) (1.32)

‣ Indirect searches detect the final products of dark ma]er annihila1on in our galac1c 
neighbourhood, using different kind of telescopes 

‣ Direct searches that look for sca]ering events of dark ma]er with heavy nuclei in 
laboratories 

‣ Collider searches that try to iden1fy the traces of direct produc1on of dark ma]er in par1cle 
accelerators (LHC)
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Cherenkov Telescope Array (CTA) Experiment

‣ Ground-based instrument to detect energe1c gamma rays 

‣ Photon energy coverage range 20 GeV - 300 TeV 

‣ 2 experimental sites: one in the northern hemisphere (La Palma, Canary Islands, Spain) 
and one in the south hemisphere (Chile, ESO, Atacama desert) 

‣ CTA will be ten 1mes more sensi1ve than its predecessors (MAGIC, HESS, VERITAS)
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The wino-like triplet model

tive field theory (EFT) treatment of the single-inclusive photon spectrum d(�v)/dE� in
DM pair annihilation near the kinematic endpoint. For the DM model we refer to the
widely discussed pure wino model, which features an electroweak triplet whose electri-
cally neutral component is the DM particle, although some results apply more generally
to DM particles in an isospin-j multiplet. We then present and discuss our result for the
all-order resummed spectrum including both the Sommerfeld and Sudakov corrections.
A more detailed exposition of the formalism as well as extensions will be reported in
a longer article. While this work was being finalized, a similar EFT calculation of the
endpoint of the � + X spectrum has appeared [13]. The present EFT formulation refers
to a finer photon energy resolution, but includes the one-loop corrections to all matching
coe�cients, soft and jet functions thus achieving NLL’ rather than NLL accuracy for the
observable in question.

2 The resummed energy spectrum

We add to the Standard Model (SM) Lagrangian a fermionic multiplet � (which can be
of Majorana or Dirac type) in an arbitrary isospin-j representation of the electroweak
(EW) SU(2) gauge group. For the Majorana case, only integer j are allowed, while for
the Dirac case also half-integer j are possible. In both cases we assume zero hypercharge
(Y = 0). The DM particle is the electrically neutral member �

0 of the 2j+1 dimensional
multiplet. The Lagrangian is

L = LSM + �(i /D � m�)� (1)

when � is a Dirac fermion. For the Majorana case, � is self-conjugate and its Lagrangian
is multiplied by 1/2. The SU(2) covariant derivative is Dµ = @µ � ig2A

C

µ
T

C where T
C ,

C = 1, 2, 3, are the SU(2) generators in the isospin-j representation and A
C

µ
are the

EW gauge bosons. In these models the dark matter particle obtains the correct relic
density from thermal freeze-out for m� in the 1-10 TeV range [14] for the favoured small
representations j = 1

2
, 1, 3

2
, 2.

2.1 E↵ective theory framework

We consider the process

�
0(p1) + �

0(p2) ! �(p�) + X(pX) (2)

for nearly maximal photon energy. Since the kinetic energy of the dark matter particles
is negligible, E

�

max
= m�. Assuming an energy resolution E

�

res
of the �-telescope, we are

interested in the quantity

h�vi(E�

res
) =

Z
m�

m��cE
�
res

dE�

d(�v)

dE�

, (3)

2

Add to the SM Lagrangian a fermionic mul1plet χ (of Majorana or Dirac type) with arbitrary 
isospin-j representa1on of the EW SU(2) gauge group and zero hypercharge (Y=0)

The DM par1cle is the electrically neutral member of the 2j+1 mul1plet

Dirac

�(p1) + �(p2) ! �(p�) +X(pX)We consider the process

� m2
X} unobserved 

recoiling jet
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DM pair annihilation near the kinematic endpoint. For the DM model we refer to the
widely discussed pure wino model, which features an electroweak triplet whose electri-
cally neutral component is the DM particle, although some results apply more generally
to DM particles in an isospin-j multiplet. We then present and discuss our result for the
all-order resummed spectrum including both the Sommerfeld and Sudakov corrections.
A more detailed exposition of the formalism as well as extensions will be reported in
a longer article. While this work was being finalized, a similar EFT calculation of the
endpoint of the � + X spectrum has appeared [13]. The present EFT formulation refers
to a finer photon energy resolution, but includes the one-loop corrections to all matching
coe�cients, soft and jet functions thus achieving NLL’ rather than NLL accuracy for the
observable in question.

2 The resummed energy spectrum

We add to the Standard Model (SM) Lagrangian a fermionic multiplet � (which can be
of Majorana or Dirac type) in an arbitrary isospin-j representation of the electroweak
(EW) SU(2) gauge group. For the Majorana case, only integer j are allowed, while for
the Dirac case also half-integer j are possible. In both cases we assume zero hypercharge
(Y = 0). The DM particle is the electrically neutral member �

0 of the 2j+1 dimensional
multiplet. The Lagrangian is

L = LSM + �(i /D � m�)� (1)

when � is a Dirac fermion. For the Majorana case, � is self-conjugate and its Lagrangian
is multiplied by 1/2. The SU(2) covariant derivative is Dµ = @µ � ig2A

C

µ
T

C where T
C ,

C = 1, 2, 3, are the SU(2) generators in the isospin-j representation and A
C

µ
are the

EW gauge bosons. In these models the dark matter particle obtains the correct relic
density from thermal freeze-out for m� in the 1-10 TeV range [14] for the favoured small
representations j = 1
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2.1 E↵ective theory framework

We consider the process

�
0(p1) + �

0(p2) ! �(p�) + X(pX) (2)

for nearly maximal photon energy. Since the kinetic energy of the dark matter particles
is negligible, E

�

max
= m�. Assuming an energy resolution E

�

res
of the �-telescope, we are

interested in the quantity

h�vi(E�

res
) =

Z
m�

m��cE
�
res

dE�

d(�v)

dE�

, (3)

2

1 Introduction

High-energy photons may constitute an important signal for the particle nature of dark
matter (DM) through the pair annihilation of DM particles. In order to distinguish the
DM component from the astrophysical �-ray background, one searches for the line signal
of the two-body annihilation �

0
�
0

! �� (or �Z) at (or very close to) E� = m�, where
m� is the mass of the dark matter particle, to be determined.

In particular, the paradigmatic WIMP with mass in the 100 GeV to 10 TeV range and
electroweak charge is expected to be observed or ruled out by the Cherenkov Telescope
Array (CTA) [1] under construction even under conservative assumptions on astrophys-
ical uncertainties, especially due to the dark matter density profile near the Galactic
center. Precise theoretical computations of the photon yield from DM annihilation are
therefore well motivated.

Recent theoretical work has focused on two aspects of the problem. First, for dark
matter annihilation into energetic particles, electroweak Sudakov (double) logarithms
O((↵2 ln2(m�/mW ))n) are large and should be summed to all orders [2–5], in addition to
the summation of ladder diagrams known as the Sommerfeld e↵ect. Second, since �-ray
telescopes do not measure two photons from a single annihilation in coincidence, the
observable is not �

0
�
0

! �� (or �Z) but rather the semi-inclusive single-photon energy
spectrum � + X, where X denotes the unidentified other final state particles. Although
the leading term in the perturbative expansion of the semi-inclusive annihilation rate
arises from the two-body final states ��, �Z, the logarithmically enhanced terms di↵er
in higher orders and this a↵ects their resummation [6–8]. It has been shown, both for
the exclusive �� annihilation rate [5], as well as for the semi-inclusive rate at narrow
energy resolution (as defined below) [7], that resummation with NLL’ accuracy, which
combines the full one-loop calculations with next-to-leading logarithmic resummation
provides precise results for the photon rate with uncertainties around 1%.

The resummation of the semi-inclusive spectrum is performed for the primary photon
energy spectrum d(�vrel)/dE� of the DM pair annihilation cross section multiplied by
the relative velocity of the annihilating particles. While in forecasts for the rate observed
by a specific telescope, the spectrum will have to be smeared with an instrument-specific
resolution function of some width E

�

res
in energy, the expected impact and accuracy of

the theoretical prediction can be equally discussed for the spectrum integrated over the
energy interval E

�

res
from its kinematic endpoint:

h�vi(E�

res
) =

Z
m�

m��E
�

res

dE�

d(�v)

dE�

. (1)

The endpoint-integrated spectrum depends on the three scales m�, mW (representative
of electroweak scale masses), and E

�

res
. We consider TeV scale dark matter, hence the

hierarchy mW ⌧ m� is always assumed. The details of the resummation of electroweak
Sudakov logarithms near the endpoint, E

�

res
⌧ m�, di↵er according to the scaling of E

�

res

and mW with respect to each other. We distinguish the following three regimes:

narrow : E
�

res
⇠ m

2

W
/m�

1

Minimal DM models 
[Cirelli,Fornengo,Strumia, 

arXiv:0512090]

The photon endpoint spectrum depends on 4 different scales: mχ (hard scale), the small 
invariant mass                                 of the unobserved energe1c final state, the EW scale                       
and the energy resolu1on scale         

mWmX =
q

4m�E
�
res

E�
res
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WIMPs

‣ TeV-scale DM annihila1on is NOT accurately described by the leading order rate, modified by 
the Sommerfeld effect generated by the EW Yukawa force on the DM par1cles prior to their 
annihila1on 

‣ In addi1on to the Sommerfeld effect, large logarithmically enhanced quantum correc1ons 
(Sudakov logarithms) arise due to restric1ons on the emission of sof radia1on 

‣ EW Sudakov logarithms in DM annihila1on into photons have been iden1fied as poten1al 
source of large correc1ons [Hryczuk, Iengo ’12] and it was resummed to all orders in 
perturba1on theory [Baumgart, Rothstein, Vaidya ’15], [Bauer, Cohen, Hill, Solon ’14], 
[Baumgart, Vaydia ’15], [Ovanesyan, Slatyer, Stewart ’14], [Ovanesyan, Rodd, Slatyer, Stewart  
’16], [Baumgart, Cohen, Moult, Rodd, Slatyer, Solon, Stewart, Vaidya  ’17] [M. Beneke, AB, C. 
Hasner, M. Vollmann, arXiv:1805.07367], [M. Beneke,  AB, C. Hasner, K. Urban, M. Vollmann, 
arXiv:1903.08702]

O((m�↵2/mW )n)

O((↵2 ln
2(m�/mW ))n)

corresponds to ladder diagrams 
with W, Z and photon exchange
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Narrow vs Wider resolu)on
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E
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res = m
2
W

/m�

Figure 1: Energy resolution of the CTA experiment (solid black line, from [9]), and the
power-law fit E

�

res
= 0.0915 (E�/TeV)0.653 (dash-dotted) with E� = m�. The dark-grey

(red) and light-grey (blue) bands show where the intermediate and narrow resolution
resummation applies, respectively. The boundaries are defined by mW [1/4, 4] (interme-
diate resolution) and m

2

W
/m� [1/4, 4] (narrow resolution).

intermediate : E
�

res
⇠ mW

wide : E
�

res
� mW (2)

The wide resolution regime was considered in [6, 8] and resummed at the NLL order.
Due to the double hierarchy m� � E

�

res
� mW a two-step procedure applies to simul-

taneously sum the unrelated large logarithms of m�/mW and E
�

res
/mW . This procedure

requires large dark matter masses to satisfy both hierarchies. Resummation of elec-
troweak Sudakov logarithms for the narrow resolution case was accomplished in [7] at
the NLL’ order. The intermediate resolution regime has not been considered up to now.

In the present paper we close this theoretical gap. We develop the e↵ective field theory
(EFT) for the intermediate resolution regime and sum the electroweak logarithms at the
NLL’ order. We show that the result can be smoothly joined to the narrow resolution
regime to provide a precise prediction of the photon energy spectrum near m� in the
entire region from the line signal (E�

res
= 0) to E

�

res
⇡ 4mW . We also provide details and

derivations for the narrow resolution regime not given in the letter [7].
The intermediate resolution regime is relevant to present and upcoming DM searches.

For example, assuming the regime to apply to E
�

res
in [mW/4, 4mW ] the energy resolution

of the H.E.S.S. experiment E
�

res
/E� ⇡ 10% [10] implies that dark matter masses in

the range 200 GeV to 3.2 TeV are covered by the intermediate resolution calculation.
For the CTA experiment, we obtain the power-law fit E

�

res
/E� = 0.0915 (E�/TeV)�0.347

from Figure 11 of [9] in the range of photon energies of interest, which is shown as
the dash-dotted line in Figure 1 together with the unapproximated resolution (solid
line). The horizontal band (dark-grey/red) represents the region of applicability of the
intermediate resolution regime, which extends to 6.8 TeV for the CTA experiment. Thus,

2

Details of the resumma1on of EW Sudakov logs differ according to the scaling of  

and  with respect to each other

Eγ
res

mW
Narrow:            

Intermediate:     

Wide:               

Eγ
res ∼ m2

W /mχ

Eγ
res ∼ mW

Eγ
res ≫ mW

Baumgart et al. [arxiv:1808.08956]

Beneke,AB,Hasner,Vollmann. [arxiv:1805.07367]

Beneke,AB,Hasner,Urban,Vollmann. [arxiv:1903.08702]
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Integrated photon energy
spectrum

1 Introduction

High-energy photons may constitute an important signal for the particle nature of dark
matter (DM) through the pair annihilation of DM particles. In order to distinguish the
DM component from the astrophysical �-ray background, one searches for the line signal
of the two-body annihilation �

0
�
0

! �� (or �Z) at (or very close to) E� = m�, where
m� is the mass of the dark matter particle, to be determined.

In particular, the paradigmatic WIMP with mass in the 100 GeV to 10 TeV range and
electroweak charge is expected to be observed or ruled out by the Cherenkov Telescope
Array (CTA) [1] under construction even under conservative assumptions on astrophys-
ical uncertainties, especially due to the dark matter density profile near the Galactic
center. Precise theoretical computations of the photon yield from DM annihilation are
therefore well motivated.

Recent theoretical work has focused on two aspects of the problem. First, for dark
matter annihilation into energetic particles, electroweak Sudakov (double) logarithms
O((↵2 ln2(m�/mW ))n) are large and should be summed to all orders [2–5], in addition to
the summation of ladder diagrams known as the Sommerfeld e↵ect. Second, since �-ray
telescopes do not measure two photons from a single annihilation in coincidence, the
observable is not �

0
�
0

! �� (or �Z) but rather the semi-inclusive single-photon energy
spectrum � + X, where X denotes the unidentified other final state particles. Although
the leading term in the perturbative expansion of the semi-inclusive annihilation rate
arises from the two-body final states ��, �Z, the logarithmically enhanced terms di↵er
in higher orders and this a↵ects their resummation [6–8]. It has been shown, both for
the exclusive �� annihilation rate [5], as well as for the semi-inclusive rate at narrow
energy resolution (as defined below) [7], that resummation with NLL’ accuracy, which
combines the full one-loop calculations with next-to-leading logarithmic resummation
provides precise results for the photon rate with uncertainties around 1%.

The resummation of the semi-inclusive spectrum is performed for the primary photon
energy spectrum d(�vrel)/dE� of the DM pair annihilation cross section multiplied by
the relative velocity of the annihilating particles. While in forecasts for the rate observed
by a specific telescope, the spectrum will have to be smeared with an instrument-specific
resolution function of some width E

�

res
in energy, the expected impact and accuracy of

the theoretical prediction can be equally discussed for the spectrum integrated over the
energy interval E

�

res
from its kinematic endpoint:

h�vi(E�

res
) =

Z
m�

m��E
�

res

dE�

d(�v)

dE�

. (1)

The endpoint-integrated spectrum depends on the three scales m�, mW (representative
of electroweak scale masses), and E

�

res
. We consider TeV scale dark matter, hence the

hierarchy mW ⌧ m� is always assumed. The details of the resummation of electroweak
Sudakov logarithms near the endpoint, E

�

res
⌧ m�, di↵er according to the scaling of E

�

res

and mW with respect to each other. We distinguish the following three regimes:

narrow : E
�

res
⇠ m

2

W
/m�

1

1 10
m�[TeV]

10�27

10�26

10�25

10�24

h
�
v
i
[c

m
3 /

s]

E
�

res = mW
Tree

LL

NLL

NLL’

Figure 3: Integrated photon energy spectrum within E
�

res
from the endpoint m� in the

tree (Sommerfeld only) and LL, NLL, NLL’ resummed approximation. The energy res-
olution is set to E

�

res
= mW . The shaded/hatched bands show the scale variation of the

respective approximation as described in the text. For the NLL’ result the theoretical
uncertainty is given by the thickness of the red line.

dotted), also called “tree”, since �IJ is evaluated in the tree approximation without any
resummation, and multiplied with the Sommerfeld factor SIJ according to (2.38); the
LL (magenta-dotted-dashed), the NLL (blue-dashed) and finally the NLL’ (red-solid)
resummed expression for �IJ , the latter of which represents the calculation with the
highest accuracy. The photon energy resolution is set to E

�

res
= mW in this figure.

36

Intermediate resolu)on

In interes1ng mass range  3 TeV where wino DM accounts for observed relic density, 
the rate is suppressed by about 30-40 %

≈

 is the kine1c energy of the two par1cle state.  
is the bound state binding energy. At the resonance 

mass values  and 

E EBS

EBS ∼ 0 S ∼ v−2
SIJ ∼

1
E − EBS
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‣ The scale uncertainty reduces from 17% (LL) to 8% (NLL) to 1% (NLL’) for                  

‣ At                                 the ratio of the resummed at NLL’ to the Sommerfeld-only rate is 
0.667+0.007

−0.006 (0.435+0.005
−0.004)

mχ = 2 TeV

mχ = 2 TeV (10 TeV)

1 10
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0.4
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i
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�
v
i
T
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e
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Figure 3: Integrated photon energy spectrum within E
�

res
from the endpoint m� in the

tree (Sommerfeld only) and LL, NLL, NLL’ resummed approximation. The energy res-
olution is set to E

�

res
= mW . The shaded/hatched bands show the scale variation of the

respective approximation as described in the text. For the NLL’ result the theoretical
uncertainty is given by the thickness of the red line.

dotted), also called “tree”, since �IJ is evaluated in the tree approximation without any
resummation, and multiplied with the Sommerfeld factor SIJ according to (2.38); the
LL (magenta-dotted-dashed), the NLL (blue-dashed) and finally the NLL’ (red-solid)
resummed expression for �IJ , the latter of which represents the calculation with the
highest accuracy. The photon energy resolution is set to E

�

res
= mW in this figure.

36

Intermediate resolu)on
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Outlook

‣ Extract and calculate all the missing ingredients to reach NNLL  accuracy for the 
top-quark pair produc1on process (hard and sof func1ons). Implement in 
GENEVA event generator 

‣ Study processes with jets in the final state. 1-jeiness NNLL’ resumma1on is 
needed. Combine with parton shower 

‣ Colour singlet processes: mul1 differen1al resumma1on in       and   to 
improve distribu1ons at small  

‣ Extend top-quark pair to study associated produc1on of a top-pair and a heavy 
boson  ( ) [AB,Ferroglia,Pecjak,Signer, Yang `15], 
[AB,Ferroglia,Pecjak,Ossola `16],[AB,Ferroglia,Pecjak,Yang `16],
[AB,Ferroglia,Pecjak,Ossola,Sameshima `17],[AB,Ferroglia,Frederix, 
Pagani,Pecjak,Tsinikos `19] 

‣ Develop resumma1on framework at NLP accuracy for hadron collider 
processes.

′ 

qT
qT

tt̄V V = H, W±, Z

Thank you!

T0


