Inference as a Service in High Energy Physics

Kevin Pedro (FNAL) January 30, 2023

Computing in the Time of x86

- Modern era of computing has been dominated by x86-architecture CPUs
 - Enabled by Moore's Law (transistors double every ~2 years) and Dennard scaling (power proportional to transistor area)
 - $\circ\,$ The former continues, but the latter has broken down
- Single thread performance has *stagnated*

More Data, More Problems

- Next-generation experiments will once again outpace industry data volumes
- Need to process $10 \times$ or more data

 \circ ...with only minor increases in general-purpose computing power

• *And*: data volumes alone don't tell the whole story

Complex Events

• Event complexity increases with detector size & complexity, beam intensity, new multimessenger frontiers

One event in CMS High Granularity Calorimeter w/ 200 simultaneous pp collisions

• But still... CPUs stay the same

Saved by Software?

	Relative CPU usage			
Configuration	Minbias	tī		
No optimizations	1.00	1.00		
Static library	0.95	0.93		
Production cuts	0.93	0.97		
Tracking cut	0.69	0.88		
Time cut	0.95	0.97		
Shower library	0.60	0.74		
Russian roulette	0.75	0.71		
FTFP_BERT_EMM	0.87	0.83		
All optimizations	0.21	0.29		

CMS simulation, circa 2018

CMS reconstruction, 200 pp collisions

- Impressive and sustained effort to increase CPU efficiency
 - Process more events and execute more algorithms without buying more or better CPUs
- Low-hanging fruit gradually being picked
 - Techniques like autovectorization, cache optimization, etc. can only be applied once...

HL-LHC Projections

- Substantial continued software R&D improvements are needed
 O Even to fit into somewhat optimistic resource increase model
- Similar story for disk and tape
 - Potentially even more constrained: can delay CPU processing tasks, but once a disk is full, it's full
- Memory, network: projections more uncertain, but undeniably finite resources

Year

Heterogeneous Revolution

- Rise of **coprocessors**: *specialized hardware* attached to general-purpose CPUs, dedicated to *specific tasks*
 - \circ **GPUs**: single instruction, multiple data \rightarrow accelerate simple mathematical operations like matrix multiplication on batches of data
 - \circ **FPGAs**: arrange reconfigurable hardware gates to perform tasks \rightarrow *spatial computing*, apply multiple instructions in parallel to input data
 - \circ ASICs: even more specialized than FPGAs, but not reconfigurable \rightarrow faster, but costlier

- Growing taxonomy: more specialized processors emerging
 - **IPUs** (intelligence processing units): multiple-instruction, multiple-data chips aimed at machine learning applications

Software Evolves with Hardware

LHC Run 1: single-core

LHC Run 2: multithreading

LHC Run 3: direct-connect offloading

- Progression: use more resources more efficiently
- Costs:
 - Multithreading: need thread-safe code
 - Framework changes
 - Partial rewrites of C++ code
 - GPU direct connect: need GPU-friendly algorithms
 - More framework changes
 - Full rewrites of C++ code into CUDA
- How to continue progression without incurring repeated costs (rewrites)?

Machine Learning to the Rescue!

- Deep neural networks improve both physics accuracy & computational acceleration potential
 - Limited subset of mathematical operations: perfect for acceleration on GPUs or other coprocessors
 - Already outperform classical/rule-based algorithms for tasks like classification
 - Now being applied to lower-level reconstruction tasks: tracking (sub-quadratic scaling), clustering, calibration (2× resolution improvement vs. rule-based)

 $[\]mathit{n}$ hidden layers, m_ℓ units in layer ℓ

Why Accelerate Inference?

- Training is viewed as "hard" part of machine learning
 - Definitely requires time & expensive resources
- But, training happens N times (algorithm evaluated M times per training cycle)
- Inference (using trained DNN) performed for every event → *billions* of times
- N×M << billions → resource needs are smaller and can be concentrated (cloud, HPC, ...)
- Training is done by experts & developers; inference is done by everyone → need solutions that scale to worldwide grid

Accelerating Physics w/ ML

Coprocessors As a Service

- Q: Will every worldwide CPU node have a coprocessor connected to it?
- A: Probably not... coprocessors are expensive!
- ➢ Need a more general approach to deploy algorithms on coprocessors
- Abstract CPU-coprocessor connection into communication protocol
- Multiple CPUs can send inference requests to multiple coprocessor servers
- Optimal, flexible, cost-effective use of resources
- Can deploy different algorithms on different coprocessors as desired

Accelerating Physics w/ ML

Services for Optimized Network Inference on Coprocessors

- SONIC: *design pattern* to implement coprocessors as a service in HEP experiment software frameworks (C++-based)
 - Goal: minimize disruption to existing computing model, minimize hardware dependence, maximize efficiency
- Numerous advantages:

- o Industry tools: gRPC, Kubernetes, inference servers
- o Containerization: ML frameworks separate from experiment software
- o Simplicity: modules only implement input/output conversions
- *Flexibility*: adjustable deployment strategies when many CPUs connect to many coprocessors
- *Efficiency*: aggregate work for full utilization of coprocessors (also most cost-effective approach)
- *Portability*: Swap CPU, GPU, FPGA, IPU, etc. without any code changes *Accessibility*: connect to any available coprocessor anywhere

Accelerating Physics w/ ML

SONIC Approach

Timeline of SONIC

2023 (DUNE)

- GPU (Nvidia)
- Triton Inference Server (Nvidia)

- were observed; sometimes more than $100 \times !$
 - Depending on CPU and coprocessor used, ML framework versions and optimizations, etc.
- Variety of hardware, experiments, server technologies, communication protocols
- Now being deployed at analysis facilities!

Converging on Triton

- Triton Inference Server:
 - o Free open source software from Nvidia
 - o gRPC communication
 - Extension of standard KServe protocols
 - o Supports all ML backends
 - + non-ML algorithms, non-Nvidia GPUs through custom backend
 - Dynamic batching: process events together to increase GPU utilization & throughput

- o And more: load balancing, compression, optimization, deployment tools...
- Has already been extended to FPGAs (FaaST, custom server implementing same protocols) and IPUs (custom backend)

Asynchronous

- Most efficient method to access coprocessors: asynchronous, non-blocking
 - o Enabled by ExternalWork mechanism in CMS software
 - On top of task-based multithreading
 - CPU does other work while coprocessor request is ongoing
 - > Minimizes impact of network latency in aaS paradigm
- Especially important in collider reconstruction case: 100s of algorithms/event

 No single dominant contributor

Synchronous

- If asynchronous functionality not available (not implemented, no task-based multithreading, etc.): can still benefit w/ synchronous, blocking calls
- ➤ Need to consider latency in performance projections

$$t_{\text{SONIC}} = (1 - p) \times t_{\text{CPU}} + t_{\text{GPU}} \left[1 + \max \left(0, \frac{N_{\text{CPU}}}{N_{\text{GPU}}} - \frac{t_{\text{ideal}}}{t_{\text{GPU}}} \right) \right] + t_{\text{latency}}$$

$$\textbf{Unsaturated case}$$

$$t_{\text{ideal}} = (1 - p) \times t_{\text{CPU}} + t_{\text{GPU}} + t_{\text{latency}}$$

$$t_{\text{SONIC}} = t_{\text{GPU}} \times \frac{N_{\text{CPU}}}{N_{\text{CPU}}}$$

- Still substantial speedup for protoDUNE:
 One large CNN dominates reco time
 - Observed performance agrees w/ above projections

IaaS at Scale

- Resource management becomes more important with IaaS, especially when scaling up
 - GPU not only resource that can saturate: also consider network bandwidth!
 - protoDUNE inputs are large (~4 Gb/image)
- Overview of resources:
 - **Processing**: client CPU(s), server CPU(s), coprocessor(s)
 - Network: both bandwidth and latency matter
 - Memory: attached to each processor
 - **Disk**: can also be local or remote
 - **Tape**: very high latency

IaaS on the Grid

- LHC experiments and other large collaborations use 100s of computing sites distributed worldwide—and no two are the same...
- A higher level of heterogeneity: choices of storage technology, CPU architecture, coprocessor deployment, etc.
- Need *abstract requirements* for:
 - o Server creation
 - o Server discovery
 - o Server preferences
 - o Load balancing
 - Deploying multiple server or framework versions, etc.

o etc.

- Also need to accelerate adoption of & support for industry tools
- Prime opportunity for further cloud integration in HEP workflows

Portability

- Major benefit of ML algorithms:
 - o Automatically portable to new architectures, coprocessors, etc.
 - ➤ Industry does the work for us!
 - And sometimes we do the work for industry:

- vs. standard approach to offload rule-based algorithms: rewrite in coprocessor-specific languages
 - Fortran \rightarrow C++ \rightarrow thread-safe C++ \rightarrow CUDA \rightarrow ???
 - Mid-LHC Run 2: expected to move to many-core systems (Knights Landing, Xeon Phi, ...), then canceled by chip companies
- New generation of HPCs: GPU-heavy, but many vendors: CUDA, HIP, SYCL, ...
 Nvidia (Summit, Perlmutter)
 Intel (Aurora)
 - o AMD (Frontier, El Capitan)
- Next generation of HPCs: who knows?

Generalizing aaS

- Even with successes of ML, many rule-based algorithms are worth preserving and lend themselves well to coprocessor acceleration
 - *Portability languages*: abstraction tool to compile same code to run on different hardware
 - leading candidate is Alpaka, based on performance & usability

	OpenMP Offload	Kokkos	dpc++ / SYCL	HIP	CUDA	Alpaka	Python	std::par	
NVidia GPU			codeplay				numba	nvc++	Supported
		feature	via hipSYCL			hip 4.0.1 /	numba		Under Developmen
AND GPU		select GPUs	and intel/livin	HIPLZ: early		clang	numba	// via//	3rd Party
Intel GPU		OpenMP target offload		prototype		prototype	numba-dppy	/oneap1::dpl/	Not Supporte
single-core									
CPU multi-core								nvc++ g++ & tbb	
FPGA						possibly via SYCL			

arXiv:2203.09945

- An "Alpaka backend" would further extend utility of SONIC and aaS
 Try to be as general and automatic as possible
 - Need compatibility with, or extraction from, experiment software
 - If a computer can do the task for you... let it!

Accelerating Physics w/ ML

Conclusion

- Growing *size* and *complexity* of data in HEP experiments
- Increasing *variety* of computational resources

• And corresponding constraints and challenges

- Accessing *coprocessors as a service*: most general & flexible approach
 SONIC brings aaS to experiment software frameworks
- Increasing use of *ML algorithms* brings both physics and technical benefits
 Easy to *accelerate* and very *portable*Benefit from *industry* developments
- Goal: be *forward-looking*

o Can't plan for every possibility

➢ Instead, plan for any possibility

Backup

References

Papers:

- J. Duarte et al., "FPGA-accelerated machine learning inference as a service for particle physics computing", <u>Comp. Soft. Big Sci. 3 (2019) 13</u>, <u>arXiv:1904.08986</u>.
- D. Rankin et al., "FPGAs-as-a-Service Toolkit (FaaST)", Proc. H2RC (2020) 38, arXiv:2010.08556.
- M. Wang, T. Yang, et al., "GPU-accelerated machine learning inference as a service for computing in neutrino experiments", <u>Front. Big Data 3 (2021) 604083</u>, <u>arXiv:2009.04509</u>.
- J. Krupa, K. Lin, et al., "GPU coprocessors as a service for deep learning inference in high energy physics", <u>Mach. Learn. Sci. Tech. 2 (2021) 035005</u>, <u>arXiv:2007.10359</u>.
- T. Cai et al., "Accelerating Machine Learning Inference with GPUs in ProtoDUNE Data Processing", <u>arXiv:2301.04633</u>, January 2023.

Code:

- <u>ToySonic</u>: simple demonstration of interfaces
- <u>SonicCore</u>, <u>SonicTriton</u>: CMSSW version
- <u>NuSonic</u>: LArSoft version
- <u>fastmachinelearning/SonicCMS</u>: FPGA versions
- <u>FaaST</u>: FPGA-as-a-Service Toolkit (server code)