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Computing in the Time of x86

• Modern era of computing has been dominated by x86-architecture CPUs

o Enabled by Moore’s Law (transistors double every ~2 years)
and Dennard scaling (power proportional to transistor area)

o The former continues, but the latter has broken down

 Single thread performance has stagnated
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More Data, More Problems

• Next-generation experiments will once again outpace industry data volumes

• Need to process 10× or more data

o …with only minor increases in general-purpose computing power

• And: data volumes alone don’t tell the whole story
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One event in CMS High 
Granularity Calorimeter w/ 
200 simultaneous pp collisions

Complex Events

• Event complexity increases with detector size 
& complexity, beam intensity, new 
multimessenger frontiers

• But still… CPUs stay the same
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136 simultaneous proton-
proton collisions (2018 data)

K. Scholberg

DUNE supernova event:
integrate to 100s → 0.5 PB
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https://indico.phys.vt.edu/event/32/contributions/564/


Saved by Software?

• Impressive and sustained effort to increase CPU efficiency
 Process more events and execute more algorithms without buying more 

or better CPUs
• Low-hanging fruit gradually being picked
o Techniques like autovectorization, cache optimization, etc. can only be 

applied once…
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CMS simulation, circa 2018
CMS reconstruction, 200 pp collisions

https://doi.org/10.1051/epjconf/201921402036
https://indico.cern.ch/event/1106990/contributions/4991266/


HL-LHC Projections
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CMSOfflineComputingResults
AtlasComputingandSoftwarePublicResults

• Substantial continued software R&D improvements are needed
o Even to fit into somewhat optimistic resource increase model

• Similar story for disk and tape
o Potentially even more constrained: can delay CPU processing tasks, but 

once a disk is full, it’s full
• Memory, network: projections more uncertain, but undeniably finite resources

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


Heterogeneous Revolution
• Rise of coprocessors: specialized hardware attached to general-purpose 

CPUs, dedicated to specific tasks
o GPUs: single instruction, multiple data → accelerate simple mathematical 

operations like matrix multiplication on batches of data
o FPGAs: arrange reconfigurable hardware gates to perform tasks → 

spatial computing, apply multiple instructions in parallel to input data
o ASICs: even more specialized than FPGAs, but not reconfigurable → 

faster, but costlier

• Growing taxonomy: more specialized processors emerging
o IPUs (intelligence processing units): multiple-instruction, multiple-data 

chips aimed at machine learning applications
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IPUs
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Software Evolves with Hardware
• Progression: use more 

resources more efficiently
• Costs:
o Multithreading: need 

thread-safe code 
 Framework changes
 Partial rewrites of C++ 

code
o GPU direct connect: need 

GPU-friendly algorithms
 More framework changes
 Full rewrites of C++ code 

into CUDA
• How to continue progression 

without incurring repeated 
costs (rewrites)?
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LHC Run 1:
single-core LHC Run 2:

multithreading

LHC Run 3: direct-connect offloading



Machine Learning to the Rescue!
• Deep neural networks improve both physics accuracy

& computational acceleration potential
o Limited subset of mathematical operations:

perfect for acceleration on GPUs or other coprocessors
o Already outperform classical/rule-based algorithms

for tasks like classification
o Now being applied to lower-level reconstruction tasks:

tracking (sub-quadratic scaling), clustering, calibration
(2× resolution improvement vs. rule-based)
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CMS-DP-2022-022

vCHEP 2021

http://cds.cern.ch/record/2815404
https://indico.cern.ch/event/948465/contributions/4323753/


Why Accelerate Inference?
• Training is viewed as “hard” part 

of machine learning
o Definitely requires time & 

expensive resources
• But, training happens N times 

(algorithm evaluated M times per 
training cycle)

• Inference (using trained DNN) 
performed for every event → 
billions of times

• N×M << billions → resource 
needs are smaller and can be 
concentrated (cloud, HPC, …)

• Training is done by experts & 
developers; inference is done by 
everyone → need solutions that 
scale to worldwide grid
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Worldwide LHC Computing Grid



Coprocessors As a Service 

• Q: Will every worldwide CPU node have a coprocessor connected to it?
• A: Probably not… coprocessors are expensive!
 Need a more general approach to deploy algorithms on coprocessors
• Abstract CPU-coprocessor connection into communication protocol
• Multiple CPUs can send inference requests to multiple coprocessor servers
• Optimal, flexible, cost-effective use of resources
• Can deploy different algorithms on different coprocessors as desired
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Services for Optimized Network 
Inference on Coprocessors

• SONIC: design pattern to implement coprocessors as a service in HEP 
experiment software frameworks (C++-based)
o Goal: minimize disruption to existing computing model,

minimize hardware dependence, maximize efficiency
• Numerous advantages:
o Industry tools: gRPC, Kubernetes, inference servers
o Containerization: ML frameworks separate from experiment software
o Simplicity: modules only implement input/output conversions
o Flexibility: adjustable deployment strategies when many CPUs connect to 

many coprocessors
o Efficiency: aggregate work for full utilization of coprocessors (also most 

cost-effective approach)
o Portability: Swap CPU, GPU, FPGA, IPU, etc. without any code changes
o Accessibility: connect to any available coprocessor anywhere

Accelerating Physics w/ ML Kevin Pedro 12



SONIC Approach
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Service

Module

Client

Data

MemResource

Module Module

• Keep track of server details: URLs, 
available models, etc.

• Launch CPU fallback server

• Produce, analyze, filter events
• Execute client operations 

(inference requests)

• Implement client-server API, make requests
• Modes: Sync, Async, PseudoAsync

• Handle I/O consistency checks, 
other operations

• Abstraction for local vs.
remote differences
(gRPC vs. shared memory)



Timeline of SONIC
2019 (CMS)
• FPGA (Intel Altera)
• TensorFlow Serving 

(Microsoft Brainwave)

2020 (CMS)
• GPU (Nvidia)
• Triton Inference Server 

(Nvidia)

2020 (DUNE)
• GPU (Nvidia)
• Triton Inference Server 

(Nvidia)

2020 (CMS)
• FPGA (Xilinx)
• FPGA-as-a-Service 

Toolkit (FaaST)

2022 (CMS)
• GPU (Nvidia)
• Triton Inference Server 

(Nvidia)

2022 (CMS)
• IPU (Graphcore)
• Custom Triton backend

2023 (DUNE)
• GPU (Nvidia)
• Triton Inference Server 

(Nvidia)
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• In all cases, per-algorithm speedups of at least 10×
were observed; sometimes more than 100×!
o Depending on CPU and coprocessor used, ML 

framework versions and optimizations, etc.
• Variety of hardware, experiments, server 

technologies, communication protocols
• Now being deployed at analysis facilities!

https://arxiv.org/abs/1904.08986
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2009.04509
https://arxiv.org/abs/2010.08556
https://arxiv.org/abs/2301.04633


Converging on Triton
• Triton Inference Server:
o Free open source software from Nvidia
o gRPC communication
 Extension of standard KServe

protocols
o Supports all ML backends
 + non-ML algorithms, non-Nvidia

GPUs through custom backend
o Dynamic batching: process events

together to increase GPU utilization
& throughput

o And more: load balancing, compression, optimization, deployment tools…
• Has already been extended to FPGAs (FaaST, custom server implementing 

same protocols) and IPUs (custom backend)
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Asynchronous

• Most efficient method to access coprocessors: asynchronous, non-blocking
o Enabled by ExternalWork mechanism in CMS software
 On top of task-based multithreading

o CPU does other work while coprocessor request is ongoing
 Minimizes impact of network latency in aaS paradigm

• Especially important in collider reconstruction case: 100s of algorithms/event
o No single dominant contributor
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External 
processing

CMSSW 
thread acquire()

FPGA, 
GPU, etc.

produce()(other work)

Eur. Phys. J. Web Conf. 245 (2020) 05009

https://doi.org/10.1051/epjconf/202024505009


Synchronous
• If asynchronous functionality not available (not implemented, no task-based 

multithreading, etc.): can still benefit w/ synchronous, blocking calls
 Need to consider latency in performance projections

• Still substantial speedup for protoDUNE:
o One large CNN dominates reco time
o Observed performance agrees w/

above projections
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Unsaturated case Saturated case

arXiv:2009.04509

(NCPU)

https://arxiv.org/abs/2009.04509


IaaS at Scale
• Resource management becomes

more important with IaaS,
especially when scaling up
o GPU not only resource

that can saturate: also consider
network bandwidth!

o protoDUNE inputs are large
(~4 Gb/image)

• Overview of resources:
o Processing: client CPU(s), server CPU(s), coprocessor(s)
o Network: both bandwidth and latency matter
o Memory: attached to each processor
o Disk: can also be local or remote
 Tape: very high latency

Accelerating Physics w/ ML Kevin Pedro 18

Saturation: 
slows down

Saturation: 
maxes out → 
jobs killed, 
data lost



IaaS on the Grid
• LHC experiments and other large collaborations use 100s of computing sites 

distributed worldwide—and no two are the same…
• A higher level of heterogeneity: choices of storage technology, CPU 

architecture, coprocessor deployment, etc.
• Need abstract requirements for:
o Server creation
o Server discovery
o Server preferences
o Load balancing
 Deploying multiple server or

framework versions, etc.
o etc.

• Also need to accelerate adoption of
& support for industry tools

• Prime opportunity for further cloud
integration in HEP workflows
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Portability
• Major benefit of ML algorithms:
o Automatically portable to new architectures, coprocessors, etc.
 Industry does the work for us!
 And sometimes we do the work for industry: 

• vs. standard approach to offload rule-based algorithms:
rewrite in coprocessor-specific languages
o Fortran → C++ → thread-safe C++ → CUDA → ???
 Mid-LHC Run 2: expected to move to many-core systems (Knights 

Landing, Xeon Phi, …), then canceled by chip companies
• New generation of HPCs: GPU-heavy,

but many vendors: CUDA, HIP, SYCL, …
o Nvidia (Summit, Perlmutter)
o Intel (Aurora)
o AMD (Frontier, El Capitan)

• Next generation of HPCs: who knows?
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Generalizing aaS
• Even with successes of ML, many rule-based algorithms are worth 

preserving and lend themselves well to coprocessor acceleration
o Portability languages: abstraction tool to compile same code to run on 

different hardware
 leading candidate is Alpaka, based on performance & usability

• An “Alpaka backend” would further extend utility of SONIC and aaS
o Try to be as general and automatic as possible
 Need compatibility with, or extraction from, experiment software

o If a computer can do the task for you… let it!
Accelerating Physics w/ ML Kevin Pedro 21

arXiv:2203.09945

https://arxiv.org/abs/2203.09945


Conclusion
• Growing size and complexity of data in HEP experiments

• Increasing variety of computational resources

o And corresponding constraints and challenges

• Accessing coprocessors as a service: most general & flexible approach

o SONIC brings aaS to experiment software frameworks

• Increasing use of ML algorithms brings both physics and technical benefits

o Easy to accelerate and very portable

o Benefit from industry developments

• Goal: be forward-looking

o Can’t plan for every possibility

 Instead, plan for any possibility
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Backup



References
Papers:
• J. Duarte et al., “FPGA-accelerated machine learning inference as a service for 

particle physics computing”, Comp. Soft. Big Sci. 3 (2019) 13, arXiv:1904.08986.
• D. Rankin et al., “FPGAs-as-a-Service Toolkit (FaaST)”, Proc. H2RC (2020) 38, 

arXiv:2010.08556.
• M. Wang, T. Yang, et al., “GPU-accelerated machine learning inference as a service 

for computing in neutrino experiments”, Front. Big Data 3 (2021) 604083, 
arXiv:2009.04509.

• J. Krupa, K. Lin, et al., “GPU coprocessors as a service for deep learning inference 
in high energy physics”, Mach. Learn. Sci. Tech. 2 (2021) 035005, 
arXiv:2007.10359.

• T. Cai et al., “Accelerating Machine Learning Inference with GPUs in ProtoDUNE
Data Processing”, arXiv:2301.04633, January 2023.

Code:
• ToySonic: simple demonstration of interfaces
• SonicCore, SonicTriton: CMSSW version
• NuSonic: LArSoft version
• fastmachinelearning/SonicCMS: FPGA versions
• FaaST: FPGA-as-a-Service Toolkit (server code)
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