
Inference as a Service
in High Energy Physics

Kevin Pedro (FNAL)
January 30, 2023



Computing in the Time of x86

• Modern era of computing has been dominated by x86-architecture CPUs

o Enabled by Moore’s Law (transistors double every ~2 years)
and Dennard scaling (power proportional to transistor area)

o The former continues, but the latter has broken down

 Single thread performance has stagnated
2Accelerating Physics w/ ML Kevin Pedro



More Data, More Problems

• Next-generation experiments will once again outpace industry data volumes

• Need to process 10× or more data

o …with only minor increases in general-purpose computing power

• And: data volumes alone don’t tell the whole story

3

DUNE
20▉▉

~30 PB

▉▉

▉▉

▉▉

▉▉

Accelerating Physics w/ ML Kevin Pedro



One event in CMS High 
Granularity Calorimeter w/ 
200 simultaneous pp collisions

Complex Events

• Event complexity increases with detector size 
& complexity, beam intensity, new 
multimessenger frontiers

• But still… CPUs stay the same

4

136 simultaneous proton-
proton collisions (2018 data)

K. Scholberg

DUNE supernova event:
integrate to 100s → 0.5 PB

Accelerating Physics w/ ML Kevin Pedro

https://indico.phys.vt.edu/event/32/contributions/564/


Saved by Software?

• Impressive and sustained effort to increase CPU efficiency
 Process more events and execute more algorithms without buying more 

or better CPUs
• Low-hanging fruit gradually being picked
o Techniques like autovectorization, cache optimization, etc. can only be 

applied once…

Accelerating Physics w/ ML Kevin Pedro 5

CMS simulation, circa 2018
CMS reconstruction, 200 pp collisions

https://doi.org/10.1051/epjconf/201921402036
https://indico.cern.ch/event/1106990/contributions/4991266/


HL-LHC Projections

Accelerating Physics w/ ML Kevin Pedro 6

CMSOfflineComputingResults
AtlasComputingandSoftwarePublicResults

• Substantial continued software R&D improvements are needed
o Even to fit into somewhat optimistic resource increase model

• Similar story for disk and tape
o Potentially even more constrained: can delay CPU processing tasks, but 

once a disk is full, it’s full
• Memory, network: projections more uncertain, but undeniably finite resources

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


Heterogeneous Revolution
• Rise of coprocessors: specialized hardware attached to general-purpose 

CPUs, dedicated to specific tasks
o GPUs: single instruction, multiple data → accelerate simple mathematical 

operations like matrix multiplication on batches of data
o FPGAs: arrange reconfigurable hardware gates to perform tasks → 

spatial computing, apply multiple instructions in parallel to input data
o ASICs: even more specialized than FPGAs, but not reconfigurable → 

faster, but costlier

• Growing taxonomy: more specialized processors emerging
o IPUs (intelligence processing units): multiple-instruction, multiple-data 

chips aimed at machine learning applications

7

IPUs

Accelerating Physics w/ ML Kevin Pedro



Software Evolves with Hardware
• Progression: use more 

resources more efficiently
• Costs:
o Multithreading: need 

thread-safe code 
 Framework changes
 Partial rewrites of C++ 

code
o GPU direct connect: need 

GPU-friendly algorithms
 More framework changes
 Full rewrites of C++ code 

into CUDA
• How to continue progression 

without incurring repeated 
costs (rewrites)?

Accelerating Physics w/ ML Kevin Pedro 8

LHC Run 1:
single-core LHC Run 2:

multithreading

LHC Run 3: direct-connect offloading



Machine Learning to the Rescue!
• Deep neural networks improve both physics accuracy

& computational acceleration potential
o Limited subset of mathematical operations:

perfect for acceleration on GPUs or other coprocessors
o Already outperform classical/rule-based algorithms

for tasks like classification
o Now being applied to lower-level reconstruction tasks:

tracking (sub-quadratic scaling), clustering, calibration
(2× resolution improvement vs. rule-based)

Accelerating Physics w/ ML Kevin Pedro 9

CMS-DP-2022-022

vCHEP 2021

http://cds.cern.ch/record/2815404
https://indico.cern.ch/event/948465/contributions/4323753/


Why Accelerate Inference?
• Training is viewed as “hard” part 

of machine learning
o Definitely requires time & 

expensive resources
• But, training happens N times 

(algorithm evaluated M times per 
training cycle)

• Inference (using trained DNN) 
performed for every event → 
billions of times

• N×M << billions → resource 
needs are smaller and can be 
concentrated (cloud, HPC, …)

• Training is done by experts & 
developers; inference is done by 
everyone → need solutions that 
scale to worldwide grid

Accelerating Physics w/ ML Kevin Pedro 10

Worldwide LHC Computing Grid



Coprocessors As a Service 

• Q: Will every worldwide CPU node have a coprocessor connected to it?
• A: Probably not… coprocessors are expensive!
 Need a more general approach to deploy algorithms on coprocessors
• Abstract CPU-coprocessor connection into communication protocol
• Multiple CPUs can send inference requests to multiple coprocessor servers
• Optimal, flexible, cost-effective use of resources
• Can deploy different algorithms on different coprocessors as desired
Accelerating Physics w/ ML Kevin Pedro 11



Services for Optimized Network 
Inference on Coprocessors

• SONIC: design pattern to implement coprocessors as a service in HEP 
experiment software frameworks (C++-based)
o Goal: minimize disruption to existing computing model,

minimize hardware dependence, maximize efficiency
• Numerous advantages:
o Industry tools: gRPC, Kubernetes, inference servers
o Containerization: ML frameworks separate from experiment software
o Simplicity: modules only implement input/output conversions
o Flexibility: adjustable deployment strategies when many CPUs connect to 

many coprocessors
o Efficiency: aggregate work for full utilization of coprocessors (also most 

cost-effective approach)
o Portability: Swap CPU, GPU, FPGA, IPU, etc. without any code changes
o Accessibility: connect to any available coprocessor anywhere

Accelerating Physics w/ ML Kevin Pedro 12



SONIC Approach

Accelerating Physics w/ ML Kevin Pedro 13

Service

Module

Client

Data

MemResource

Module Module

• Keep track of server details: URLs, 
available models, etc.

• Launch CPU fallback server

• Produce, analyze, filter events
• Execute client operations 

(inference requests)

• Implement client-server API, make requests
• Modes: Sync, Async, PseudoAsync

• Handle I/O consistency checks, 
other operations

• Abstraction for local vs.
remote differences
(gRPC vs. shared memory)



Timeline of SONIC
2019 (CMS)
• FPGA (Intel Altera)
• TensorFlow Serving 

(Microsoft Brainwave)

2020 (CMS)
• GPU (Nvidia)
• Triton Inference Server 

(Nvidia)

2020 (DUNE)
• GPU (Nvidia)
• Triton Inference Server 

(Nvidia)

2020 (CMS)
• FPGA (Xilinx)
• FPGA-as-a-Service 

Toolkit (FaaST)

2022 (CMS)
• GPU (Nvidia)
• Triton Inference Server 

(Nvidia)

2022 (CMS)
• IPU (Graphcore)
• Custom Triton backend

2023 (DUNE)
• GPU (Nvidia)
• Triton Inference Server 

(Nvidia)

Accelerating Physics w/ ML Kevin Pedro 14

• In all cases, per-algorithm speedups of at least 10×
were observed; sometimes more than 100×!
o Depending on CPU and coprocessor used, ML 

framework versions and optimizations, etc.
• Variety of hardware, experiments, server 

technologies, communication protocols
• Now being deployed at analysis facilities!

https://arxiv.org/abs/1904.08986
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2009.04509
https://arxiv.org/abs/2010.08556
https://arxiv.org/abs/2301.04633


Converging on Triton
• Triton Inference Server:
o Free open source software from Nvidia
o gRPC communication
 Extension of standard KServe

protocols
o Supports all ML backends
 + non-ML algorithms, non-Nvidia

GPUs through custom backend
o Dynamic batching: process events

together to increase GPU utilization
& throughput

o And more: load balancing, compression, optimization, deployment tools…
• Has already been extended to FPGAs (FaaST, custom server implementing 

same protocols) and IPUs (custom backend)

Accelerating Physics w/ ML Kevin Pedro 15



Asynchronous

• Most efficient method to access coprocessors: asynchronous, non-blocking
o Enabled by ExternalWork mechanism in CMS software
 On top of task-based multithreading

o CPU does other work while coprocessor request is ongoing
 Minimizes impact of network latency in aaS paradigm

• Especially important in collider reconstruction case: 100s of algorithms/event
o No single dominant contributor

Accelerating Physics w/ ML Kevin Pedro 16

External 
processing

CMSSW 
thread acquire()

FPGA, 
GPU, etc.

produce()(other work)

Eur. Phys. J. Web Conf. 245 (2020) 05009

https://doi.org/10.1051/epjconf/202024505009


Synchronous
• If asynchronous functionality not available (not implemented, no task-based 

multithreading, etc.): can still benefit w/ synchronous, blocking calls
 Need to consider latency in performance projections

• Still substantial speedup for protoDUNE:
o One large CNN dominates reco time
o Observed performance agrees w/

above projections

Accelerating Physics w/ ML Kevin Pedro 17

Unsaturated case Saturated case

arXiv:2009.04509

(NCPU)

https://arxiv.org/abs/2009.04509


IaaS at Scale
• Resource management becomes

more important with IaaS,
especially when scaling up
o GPU not only resource

that can saturate: also consider
network bandwidth!

o protoDUNE inputs are large
(~4 Gb/image)

• Overview of resources:
o Processing: client CPU(s), server CPU(s), coprocessor(s)
o Network: both bandwidth and latency matter
o Memory: attached to each processor
o Disk: can also be local or remote
 Tape: very high latency

Accelerating Physics w/ ML Kevin Pedro 18

Saturation: 
slows down

Saturation: 
maxes out → 
jobs killed, 
data lost



IaaS on the Grid
• LHC experiments and other large collaborations use 100s of computing sites 

distributed worldwide—and no two are the same…
• A higher level of heterogeneity: choices of storage technology, CPU 

architecture, coprocessor deployment, etc.
• Need abstract requirements for:
o Server creation
o Server discovery
o Server preferences
o Load balancing
 Deploying multiple server or

framework versions, etc.
o etc.

• Also need to accelerate adoption of
& support for industry tools

• Prime opportunity for further cloud
integration in HEP workflows

Accelerating Physics w/ ML Kevin Pedro 19



Portability
• Major benefit of ML algorithms:
o Automatically portable to new architectures, coprocessors, etc.
 Industry does the work for us!
 And sometimes we do the work for industry: 

• vs. standard approach to offload rule-based algorithms:
rewrite in coprocessor-specific languages
o Fortran → C++ → thread-safe C++ → CUDA → ???
 Mid-LHC Run 2: expected to move to many-core systems (Knights 

Landing, Xeon Phi, …), then canceled by chip companies
• New generation of HPCs: GPU-heavy,

but many vendors: CUDA, HIP, SYCL, …
o Nvidia (Summit, Perlmutter)
o Intel (Aurora)
o AMD (Frontier, El Capitan)

• Next generation of HPCs: who knows?

Accelerating Physics w/ ML Kevin Pedro 20



Generalizing aaS
• Even with successes of ML, many rule-based algorithms are worth 

preserving and lend themselves well to coprocessor acceleration
o Portability languages: abstraction tool to compile same code to run on 

different hardware
 leading candidate is Alpaka, based on performance & usability

• An “Alpaka backend” would further extend utility of SONIC and aaS
o Try to be as general and automatic as possible
 Need compatibility with, or extraction from, experiment software

o If a computer can do the task for you… let it!
Accelerating Physics w/ ML Kevin Pedro 21

arXiv:2203.09945

https://arxiv.org/abs/2203.09945


Conclusion
• Growing size and complexity of data in HEP experiments

• Increasing variety of computational resources

o And corresponding constraints and challenges

• Accessing coprocessors as a service: most general & flexible approach

o SONIC brings aaS to experiment software frameworks

• Increasing use of ML algorithms brings both physics and technical benefits

o Easy to accelerate and very portable

o Benefit from industry developments

• Goal: be forward-looking

o Can’t plan for every possibility

 Instead, plan for any possibility

Accelerating Physics w/ ML Kevin Pedro 22



Backup



References
Papers:
• J. Duarte et al., “FPGA-accelerated machine learning inference as a service for 

particle physics computing”, Comp. Soft. Big Sci. 3 (2019) 13, arXiv:1904.08986.
• D. Rankin et al., “FPGAs-as-a-Service Toolkit (FaaST)”, Proc. H2RC (2020) 38, 

arXiv:2010.08556.
• M. Wang, T. Yang, et al., “GPU-accelerated machine learning inference as a service 

for computing in neutrino experiments”, Front. Big Data 3 (2021) 604083, 
arXiv:2009.04509.

• J. Krupa, K. Lin, et al., “GPU coprocessors as a service for deep learning inference 
in high energy physics”, Mach. Learn. Sci. Tech. 2 (2021) 035005, 
arXiv:2007.10359.

• T. Cai et al., “Accelerating Machine Learning Inference with GPUs in ProtoDUNE
Data Processing”, arXiv:2301.04633, January 2023.

Code:
• ToySonic: simple demonstration of interfaces
• SonicCore, SonicTriton: CMSSW version
• NuSonic: LArSoft version
• fastmachinelearning/SonicCMS: FPGA versions
• FaaST: FPGA-as-a-Service Toolkit (server code)

Accelerating Physics w/ ML Kevin Pedro 24

https://doi.org/10.1007/s41781-019-0027-2
https://arxiv.org/abs/1904.08986
https://doi.ieeecomputersociety.org/10.1109/H2RC51942.2020.00010
https://arxiv.org/abs/2010.08556
https://doi.org/10.3389/fdata.2020.604083
https://arxiv.org/abs/2009.04509
https://doi.org/10.1088/2632-2153/abec21
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2301.04633
https://github.com/kpedro88/ToySonic
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/LArSoft/larrecodnn/tree/develop/larrecodnn/ImagePatternAlgs/NuSonic
https://github.com/fastmachinelearning/SonicCMS/tree/v5.2.0
https://github.com/fastmachinelearning/FaaST

	Inference as a Service�in High Energy Physics
	Computing in the Time of x86
	More Data, More Problems
	Complex Events
	Saved by Software?
	HL-LHC Projections
	Heterogeneous Revolution
	Software Evolves with Hardware
	Machine Learning to the Rescue!
	Why Accelerate Inference?
	Coprocessors As a Service 
	Services for Optimized Network Inference on Coprocessors
	SONIC Approach
	Timeline of SONIC
	Converging on Triton
	Asynchronous
	Synchronous
	IaaS at Scale
	IaaS on the Grid
	Portability
	Generalizing aaS
	Conclusion
	Backup
	References

