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Proton Collisions

Probing quark

sum (T + d)
Proton Proton

Collision zone

Proton-proton collisions
Different particles produced from the collisions:
®* charged, neutral particles (neutral hadrons, photons, etc)

“®* Each particle carries its own position and kinematic information
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Point Cloud Data

‘ Charged B Neutral hadron ¥ Photon HF Cands
. . O - -
3 ¢ o = e * - .o * @ v o ®
»y ° a . °
@ B o
°* e g v ® o* v =3 v e}
a v ® .
® v v v *
o vy ¢ M v
1 v ‘-. o . - - *
L] o o . ]
' o y v e*
g e .. y * ® o v ® -
v B o v " - o e® o . a®
v v v < v ® °
[ ¢ o . o ] * ® e . ‘e . o N
® e T ®—e . ® .
2 a e o o o . v
v ® o .' . o » v
. a . P v oy
. ° . ® . o ’ ° .‘.
L J
] = » v -
. ® =TT Y . 1 o111
. . ® o] . Yy
v - ° v ® .. . 3
| v . | . - .
. ..v L] ° v ® A ) .‘ - v
o -
o ® . 5 A ' o v ° . A .
o
1 . o K '.' : n .'o . . H
v ‘e Ve s s -
e
" . ‘ v el b o
v . . ® . v . d
O o . = . *
u - 8 a '.’ ° oo .‘v 1 . °
“ = v °
X i ., . *V . o c.
| Y = [ | o
. ® . L v l v '.
@ " o© ® .
" J ¢ Lo - o - ., b E Y . v
a . v . v . 4 ) . Kl ® '
e . L ]
o 0 > 1 . ® o " . .
v = B o
m e ' ’ o’ I R L o [TeITTTTY
- ' v
v L . . =N *® » .
" v - ' o ..' 3 s :
. o . . o ’ L ] - .
o . o o Xt ® O
[} o P a LAJ v’ ° oa
v : ° * ¥ o > ‘ r
| 1 r ® -
m . s v 3 . L v 3 .
v 9 : * % v ., © * e ° "y .
-1 E ., : ., o'. ® a
« B Y o L ® ° L
" v L e - v .* o ° °
a = " " 3 ® o I
d v v o v
® .. .s. v +® AR & Yo L
. - o Y. ", * ’
g | o o ."* * L ©
‘o y ® . ¢ « Ov Y o ‘e
° " L ‘e - ' '. B . o5 ™ v
v " v
@ . . v, PR v Y e® o i
. . . ‘ .. ® ° -] v . [ ° . ve . ° o o
v
: * . * . .. .
_2 . a ...' L] s v
o [ ] o . o'
' ¢ ¢ s * v
i L J v ® ' i ... v
. ® . H b
m] . © o
o* a
™Y ° LA .
.‘. i .n .. ™
L ] ) a v
Y o« P W, ' N
L ] .
o . ¢ . @ - s}
3 | . s a o . o o
- . L J .
LR * . . .- v ° . L] .
T T T T T
-4 -2 0 2 4




ML Algorithm Developments

Convolutional Neural
Network

Boost 'i (Fully-Connected) Deep- '

DeCiSion sy | Neural-Network | Graph Neural Network |

Trees ' i (Multi Layer Perceptron) '-

Conv_1 Conv_2
Convolution Convolution
Outputs (5 X 5) kerr'1el Max-Pooling (5 X 5) kerr.rel Max-Pooling
valid padding 2x2) valid padding (2x2)
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* ML algorithms explored and deployed in LHC/HEP experiments:

---------

INPUT nl channels nl channels n2 chann
OUtPUt (24 x24 x n1) (12x 12 xnl) (8x8xr

Layer (28 x28x 1)

Input Hidden
Layer Layer

2 Object (jet/tau/etc) tagging, signal/background discrimination, track/calorimeter reconstruction, trigger, etc

% Architectures get more complicated; networks get deeper; and the performances get better and better

> So does the computing time 4
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Deploying Coprocessors for High Throughput

As-a-service with SONIC

Em ()

* Some of the benefits with as-a-service model:

2> CPU and GPU ratios are dynamic depending on the inferecen
task. GPUs can batch inference requests from different CPU
clients together, such that the throughput can be increased

and the GPU utilizations can be increased. (Dynamic WG
Batching)

Em ()




Example: Jet Flavor Tagging
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: M. Strassler 2012
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@ e @ * One example: jet flavor tagging task
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* With new GNN models the mistag rate can drop by one
order of magnitude without tagging efficiency decrease
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Example: Jet Flavor Tagging

* Inferences take times: currently takes about
5-10% of the CMS Mini-AOD processing time
for the inferences

* Expect these to increase dramatically in the
next decade, as more and more algorithms get
integrated, and they are more and more
complicated




Inference Comparisons

CMS Simulation (13 TeV) CMS Simulation (13 TeV)
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O(10) times faster running on the GPUs (dashed) compared with CPUs (solid)
Large batch sizes bring to larger throughputs

Can explore different ML backends and see which one is faster



Inference Comparisons

* One server can serve many CPU clients: O(10) -
O(100) CPU clients pinging one server, without
any performance decrease

10

Throughput [evt/s]
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CMS Simulation 13 TeV
| | | | | | | | | | ]

. PyTorch ParticleNet for AK4 jets .
- . DeepMET .
- . DeepTau with TRT

PyTorch ParticleNet for AK8 jets (3 models on 1 GPU§I

Avg throughput of ""Direct-connected" = 3.88 evt/s

10°
Number of synchronized 4-threaded jobs



Track Reconstruction at the HL-LHC
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* Track reconstruction is expected to be very challenging in the future, especially at the HL-LHC:
2 A ttbar event with 150-200 pileup at the HL-LHC will produce O(5K) charged particles, and O(100K) spacepoints

* Computing cost does not scale linearly with number of pileup. Track reconstruction takes the major fraction of
time among all the reconstruction steps

[



ML-based Track Reconstruction

Graph Neural

Metric o0 1® o Connected
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Graph Edge Graph
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Inference Costs

Inputs: Hits Embedding Building
(spacepoints) (MLP) (Graph Building)

(-
IS

Edge ﬁltering 1 W CPU - 48 cores
Outputs: Track collection (MLP) w= GPU
[abeling {_ GNN
(Domain Algorithm) (Interaction Network)

* Workflow runs much faster on GPUs compared with CPUs after
optimizations: from O(20s) on 48-core Intel Xeon 8268s CPUs to <Is on
NVIDIA V100. More details on Arxiv.2202.06929

— =
o N

.

Inference Time (s)
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https://arxiv.org/pdf/2202.06929.pdf

Inference As-a-Service

Client: Regular Workflow

* Inference as-a-Service provides lots of

Server: Exa.TrkX Services
benefits, e.g.:

> Separate ML inferences out of the main
software, easy to maintain

s Enables access to remote GPUs;

more flexibility of the CPU/GPU ratios;

I

Easy deployment on different types of
COprocessors

o Etc

* More in Patricl’s talk and Kevin's talk

14


https://indico.cern.ch/event/1224718/contributions/5242299/
https://indico.cern.ch/event/1224718/contributions/5238303/

Current Exa. TrkX Workflow with as-a-Service

:Client: Server
' ' ' Embedding Building Edge filtering
(Pytorch) (CUDA/Python) (Pytorch)

Labeling

(cpp in boost, Py with
some GPU code)

Inputs: Hits
(spacepoints)

Outputs: Track
collection

GNN
(Pytorch)

* Server side uses NVIDIA Triton Inference server. Various features and benefits:

> Supports of different backends: ML including TF Pytorch, ONNX; domain algorithms: CUDA, Python, Cpp

> Ensemble model that can collect the whole inference modules together; reduce the 10s between client and server

* Pytorch models runs out of the box; CUDA and cpp implementations currently done with Python custom
backend

15


https://developer.nvidia.com/nvidia-triton-inference-server

Preliminary Results

Embedding 0.5 Embedding 1.7
Building 2.2 Building 7.3
Filtering 27.6 Filtering 26.7

GNN 31.7 GNN 21.3
Total 62 Total 64.4

Benchmarked in the 0-PU dataset to start with.

Time not including the labeling part (domain algorithm code; takes some efforts to prepare a custom backend for
it)

Similar inference time between CPU-GPU directly connected and CPU-Server with aa$S:

2 Also checked the server-side metrics: the fraction of time to handle 1Os are small. Most of the time are on computations.

Working in integrating the workflow into the official ATCS/Athena software and testing the performances

16



SONIC Development: GraphCore IPU Tests

* As-a-Service allows easy deployment of inference on
different times of coprocessors:

> Prepared the CMS production workflow, with several

intensive ML inferences tasks offloaded to coprocessors with
SONIC

* GraphCore has developed Intelligence Processing Units

———————————

(IPUs) Al chip, enabling very fast ML training and LI

IPU-Core™
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* GraphCore team is developing the Triton Custom Backends
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1 B ]

to support running TensorFlow models as-a-Service on the
|PUs:
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_________

10 x IPU-Links,
320GB/s chip to chip bandwidth
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https://www.graphcore.ai/
https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/products/ipu

SONIC Development: GraphCore IPU Tests

* Run the CMSSW MiniAOD production on the
cluster, with DeepMET and DeepTau inference
(Tensorflow models) aaS on [PU-POD | 6s:

Server (Triton)
on GraphCore Cloud

2 Workflow runs well; outputs as expected and
consistent with CPU/GPU results; 5% MiniAOD

throughput gains as expected. IPUs (:)

* For the ML model inferences, throughputs are
roughly a factor of 3 higher compared with :
NVIDIA Tesla V100 for these models Server (Triton)

% DeepMET and DeepTau Models tends to be I/O on GraphCore Cloud

bounded. Expect more improvements for more : W
computing intensive models " IPUs @

* Can run large-scale production tests with [PUs
once having PyTorch/ONNX models supported
and having enough CPU clients to saturate the
IPUs

18


https://www.graphcore.ai/products/mk2/ipu-pod16
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More: Ragged Batching Exploration

I wn
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Baseline
N. weights 387966

Simpler rechits layer
N. weights 168860

Zero-padding
No dynamic zero-padding
(Nais = 60, Nhits = 60) |
Dynamic zero-padding |
Without rechits layer (threshold Ngis < 15, Nhits < 20)

N. weights 371616

CPU single thread
Avg. on 100 events 1
TTbar MC < PU > =65 )

Without rechits layer
(small)

N. weights 164640
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% CPU time, CMS reconstruction

= Inference time in CMSSW of the DeepSC algorithm: comparison between fixed or dynamic zero-
padding strategy

* ECAL electron and photon supercluster reconstruction with GraphNN:

2 Number of inputs varies a lot event-by-event; inference performance strongly depends on the number of inputs

% Triton provides ragged-batching feature to vary the number of inputs; under investigation

19



Summary

* With more data and more complicated algorithms, computing challenges expected for the (HL-)LHC
* Coprocessors, such as GPUs, is one solution to such computing challenges

* Coprocessors with as-a-Service can more efficiently utilize coprocessor resources and boost the performances

20
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