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Background and Motivation

■ It was the end of O2 everybody was talking about how the future will be 

overwhelming with detections rates of 1/day in the future.

■ The first papers discussing applications of ML on signal detection (CBCs only) were 

been published.

■ There was still justified skepticism about ML in LIGO due to some very enthusiastic 

claims by some of those first papers. 

■ Mostly because the efficiencies claimed were set on high, unusable false alarm 

rate.
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Goals

■ We needed an ML search for transient signals, not only CBCs. – MLy Pipeline 

■ It needs to be trustworthy. – We need to reach low FAR on detector noise before we do 

any claims. 

■ Compare our results on the same basis as analytical methods. – Comparison with CWb.

■ It needs to be easily reproducible – Creating a framework of analyzing the data.
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Building blocks
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1. Simulated gaussian Noise 20-1024Hz

2. Whine  Noise  Bursts  (WNBs) Fmin , Fmax , T



Model 1 
Is there a signal to at least two detectors ?

5

Gaussian Noise following detector’s response (Coherent) White Noise Bursts (signal)

WNB in one detector (glitch behavior)



Model 2
Is there any coherency between any 
detectors ?
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Gaussian Noise following detector’s response 

(Coherent) White Noise Bursts (signal) Incoherent White Noise Bursts 



Model 2
Correlation data
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Detection Algorithm
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The power of data type ratios
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Detector contribution balance
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Training Data

Testing Data (O2)

The noise level of Virgo in 

artificial data is much closer to 

H1 and L1 than in the real data.



Detector contribution balance
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O2 performance 
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O3a performance 
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Low latency application

■ The background data are becoming available every second.

■ Noise behavior changes, so we need to be able to able to update our FAR and 

eventually our thresholds in real time. We need continuous FAR estimation. 

■ From every hour of data, we can roughly get 40 days of background simulation. We 

use Hermes increase our throughput up to 1000 inferences/s.

■ And finally, the most important, latency of order of seconds. 
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MLy pipeline 

Requesting 16 s of data

Processing: down-

sampling (1024Hz), 

whitening, high-passing  

1 s  Strain

±30 ms Correlation

Classifier model Score [0,1]

Updating FAR 

threshold

Alert

Score > Threshold

Calculation of FAR

Using time-lags (1/h)
GraceDB

Event

P.E. inference

Sky map 

generation

15 – 25 s



Future plans

■ Off-line search. Demonstrating low computational costs.

■ Overlapping segments during inference. Evolve our significance metric.

■ Continuous training : Fine-tuning of the models as new data become available. 

Utilization of real noise.

■ Expansion of search parameter space (higher frequencies, longer duration)

■ Low latency glitch rejection. Reduction of FAR.
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Thank You
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