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Background and Motivation

m [t was the end of O2 everybody was talking about how the future will be

overwhelming with detections rates of 1/day in the future.

m The first papers discussing applications of ML on signal detection (CBCs only) were

been published.

m There was still justified skepticism about ML in LIGO due to some very enthusiastic

claims by some of those first papers.

m Mostly because the efficiencies claimed were set on high, unusable false alarm

rate.




Goals

m We needed an ML search for transient signals, not only CBCs. - MLy Pipeline

m [t needs to be trustworthy. - We need to reach low FAR on detector noise before we do

any claims.
m Compare our results on the same basis as analytical methods. - Comparison with CWb.

m |t needs to be easily reproducible - Creating a framework of analyzing the data.



Building blocks

1. Simulated gaussian Noise 20-1024Hz
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Model 1

Is there a signal to at least two detectors ?

WWWMW P Mg

: At NW’ W'r g W il W‘ W’" hﬂv}mﬂ Wk f‘

A Ay

(Coherent) White Noise Bursts (signal) Gau55|an N0|se foIIowmg detector S response

MM '
O AU ARD W A oo A b Wy v e S L i

'mmwm,‘l,' i '1,WWNJ’W“WW

Tere

WNB in one detector (glitch behavior)
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Model 2

Is there any coherency between any

detectors ?
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Incoherent White Noise Bursts

Strain Correlation

Input 1024 x 3

Input 60 x3

Stride 4
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Global
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Model 2

Correlation data




Detection Algorithm
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The power of data type ratios

Training Data Contributions
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Detector contribution balance

! Training Data

The noise level of Virgo in
artificial data is much closer to
H1 and L1 than in the real data.
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False Alarm Tests

Detector contribution balance

False Alarms
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Efficiency O2 HLV
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Performance comparison on the O3a HLV data set
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Low latency application

m The background data are becoming available every second.

m Noise behavior changes, so we need to be able to able to update our FAR and
eventually our thresholds in real time. We need continuous FAR estimation.

m From every hour of data, we can roughly get 40 days of background simulation. We
use Hermes increase our throughput up to 1000 inferences/s.

Time lag Generation Time lag Generation Time lag Generation
— —

m And finally, the most important, latency of order of seconds.

14



MLy pipeline
Requesting 16 s of data

Processing: down-
sampling (1024Hz),
whitening, high-passing

1 s Strain
+30 ms Correlation

Classifier model

Calculation of FAR GraceDB
Using time-lags (1/h)

Event

Updating FAR
threshold

Sky map
generation

Score > Threshold




Future plans

m Off-line search. Demonstrating low computational costs.
m Overlapping segments during inference. Evolve our significance metric.

m Continuous training : Fine-tuning of the models as new data become available.
Utilization of real noise.

m EXxpansion of search parameter space (higher frequencies, longer duration)

m Low latency glitch rejection. Reduction of FAR.
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Thank You
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