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STATUS OF NEW PHYS ICS  SEARCHES IN  HEP
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We need new physics (NP) to explain many phenomena  
Dark matter/energy, flavour puzzles, strong CP, 
hierarchy, baryogengesis. But dedicated searches are  
not successful so far
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We should accept the possibility that we do not know 
what to look for and perform unsupervised searches 
for something that is off, “anomalous”
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THE LHC BIG DATA PROBLEM

L1 

100 KHZ

At the first level (L1) of the trigger system  
• FPGAs/hardware implemented  
• Processing time 10 μsec 
• Based on coarse local reconstruction 
• Typical event size 500 KB/event

40 MHZ
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THE LHC BIG DATA PROBLEM

40 MHZ

L1 HLT

100 KHZ 1 KHZ 

At the High-Level Trigger stage  
• Software implemented on CPUs  
• Processing time 30 milliseconds 
• Typical event size 500 KB/event
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THE LHC BIG DATA PROBLEM

L1 HLT

100 KHZ

ANALYS IS

1 KHZ 

At the offline analysis stage  
• Typically 100-1000 events out 
• Processing time is irrelevant 
• User-written code and centrally  

    produced selection algorithms 
• < 30 KB per event

40 MHZ
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THE LHC BIG DATA PROBLEM

L1 HLT

100 KHZ

ANALYS IS

1 KHZ 40 MHZ

With such a tight selection to be made, the risk of discarding events is not negligible 
The problem starts with the need to assume a specific physics model, to then make sure that we 
trigger on it              

What if we never consider the right model?  
We will deploy in the trigger system an algorithm that selects anomalous events with deep learning 
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L1 HLT

100 KHZ

ANALYS IS

1 KHZ 

At the offline analysis stage  
• Can use very large ML models 
• But NP can already be discarded 

40 MHZ

WHEN TO LOOK FOR ANOMALIES?
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40 MHZ

L1 HLT

100 KHZ 1 KHZ 

At the High-Level Trigger stage  
• 100 times more data so more chance to find NP 
• However stickier requirements on latency

WHEN TO LOOK FOR ANOMALIES?
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L1 

100 KHZ

At the first level of the trigger system  
• Extreme latency (50ns) and resource usage requirements  
• Only partial event information is available  
• But the algorithm will see ALL the data produced at the LHC

40 MHZ

WHEN TO LOOK FOR ANOMALIES?
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L1 HLT

100 KHZ

ANALYS IS

1 KHZ 

PUBL IC  CHALLENGES

40 MHZ

• Unsupervised New Physics detection at 40 MHz  

• LHC Olympics 2020 2101.08320 
• The Dark Machines Anomaly Score 

Challenge 2105.14027

https://mpp-hep.github.io/ADC2021/
https://lhco2020.github.io/homepage/
https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2105.14027
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TRA IN ING AND DATASETS

The data mimic L1 trigger data format 

Train using 4 million background-like events  
simulated with Delphes 💾  
Events are pre-filtered to have at least one lepton 

• Inclusive W production, with W → l𝜈 (59.2%) 

• Inclusive Z production, with Z → ll (6.7%) 
• tt production (0.3%) 
• QCD multijet production (33.8%) 

Evaluate performance on several different New Physics  
simulated samples  

• Neutral scalar boson A, 50 GeV → 4 l 💾  
• Leptoquark, 80 GeV → b τ 💾  
• Scalar boson, 60 GeV → τ τ 💾  
• Charged scalar boson, 60 GeV → τ 𝜈 💾
• Black Box 🎁

4 m
illi

on

pT η φ
MET
4 e/𝛾
4 μ

10 jets

https://arxiv.org/abs/1307.6346
https://zenodo.org/record/5046389#.YNyCfi0Rpqs
https://zenodo.org/record/5046446#.YNyFZC0Rpqs
https://zenodo.org/record/5055454#.YN3IUy0Ro0o
https://zenodo.org/record/5061633#.YN8itC0RqfU
https://zenodo.org/record/5061688#.YN8iyi0RqfU
https://zenodo.org/record/5070455#.YOMSKy0RqfU
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AUTOENCODERS FOR ANOMALY DETECT ION

• Autoencoders are compression-decompression algorithms 
that learn to describe a given dataset in terms of points in a 
lower-dimension latent space 

Input-output anomaly detection with loss  

MSE(input, output) = 
1
N

N

∑
i=0

(input − output)2

Encoder De
co

de
r

Latent 
space

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.
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Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].
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ENHANCING VANILL A AUTOENCODERS

• Variational autoencoders — deep generative models that 
learn a compact representation of the data 2108.03986 

• Normalising flows — transform simple distributions into 
complex ones by applying a series of invertible 
transformations 2110.08508 

• Contrastive autoencoders — learn compact representations 
by contrasting positive pairs of samples with negative pairs 
2301.04660 

• Combining several AEs — ABCD method, and also see the 
talk from Ryan  

Sample
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z

https://arxiv.org/abs/2108.03986
https://arxiv.org/abs/2110.08508
https://arxiv.org/abs/2301.04660
https://arxiv.org/abs/2111.06417
https://indi.to/y24kH
https://indi.to/y24kH
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HARDWARE IMPLEMENTAT ION WORKFLOW

Model

Keras 
TensorFlow 

PyTorch 
…

Compressed 
Model

HLS  
conversion

HLS 
project

FPGA flow

ASIC flow

Tune configuration 
Latency, throughput, power, resource usage

In case hardware implementation 
is needed, there are tools for that, 
such as hls4ml

https://github.com/fastmachinelearning/hls4ml


• Once the event is passed L1 anomalous trigger by having a 
loss above the threshold, it is saved 

• Offline we can cluster all the anomalous events and compare 
to expected clusters with simulation 

• Once we see unexpected clusters in the data, we can have a 
closer look and potentially develop dedicated triggers for 
those phase space areas  

• This can also be used to monitor the detector quality 

40 MHZ HLT TRIGGERED 
EVENTS

CLUSTER ING 
EVENTS

L1 
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ANOMALY DETECT ION P IPEL INE
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SUMMARY 

Anomaly detection for new physics searches is now considered at 
every stage of data processing at the LHC 

With the constant development of ML tools, there are more 
sophisticated unsupervised algorithms that can help us finally shed a 
light on new physics (or on detector malfunctions) 

There is still a lot of work to be done to create a user-friendly 
established pipeline for AD algorithms in the trigger, and this work is 
being done now 


