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Despite differences in language, there is a common theme



• We are excited that you have all come to the meeting 

- We hope to have a lot of interesting discussions 

• We thank you for taking the time to come to this meeting 

• This meeting is the result of ongoing discussions 

-  Many of you are involved in our efforts 

‣ Astronomy, Gravitational Waves, Particle Physics 

• Despite coming from many different venues 

• We all share a common goal and vision 

• We often share computers and code

3

Welcome!
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Agenda

Hackathon Hackathon

Breakout

Computing

Talks Talks Talks

Closeout

Full Agenda is available here :  
https://indico.cern.ch/event/1224718/timetable/#20230130 

Many of you are following Hackathon  
Its focus on the GW inference engine

https://indico.cern.ch/event/1224718/timetable/#20230130
https://indico.cern.ch/event/1224718/timetable/#20230130
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Cambridge
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Dinner Location



• Things are starting to change in the way we compute 

- ML algorithms have the ability to go beyond algorithms 

‣ This is also b/c GPUs have helped to parallelize computation
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An Angle on AI revolution

2016 ML(BDT)

2019 M
L(RNN)

2020 M
L(G

raphNN)
Small ML  
Small Peak

Big ML  
Big Peak
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Deep Learning Progression

Images  
(not lorentz invariant)

Particles and SVs 
with 4-vectors+features

Particles  
(limited correlations) 

Graphs  
(Particles+correlations) 

2016 20202018

Progressively moving towards use of more info



• Inevitable that our algorithms will become progressively larger

9

What does this mean? 
A

ll 
th

e 
R

aw
 In

pu
ts

  
(T

ra
ck

s,
C

lu
st

er
s)

A 
N

ew
 N

er
ua

l N
et

A
ll 

of
 th

e 
P

at
ric

le
s!

All particles in on fell swoop



• With the development of AI algorithms we need two things 

- Training and Testing  

- Processing power to run on the data
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Algorithm Needs

GPU

CPU

Training Workflow

GPU

Inference Workflow

CPUCPU

CPU CPU
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Algorithm Needs
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CPUCPU

CPU CPU

Solved 
Big HPCs dump as many GPUs  
as they possibly can in a room 
Aim for the maximum compute 

What we need 
Requires Dynamic allocation to  
balance GPUs and CPUs focus 
is on dealing with processing
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• We would like to highlight commonalities across domains 

- Computing demands 

‣ Looking for computing infrastructure for ML science deployment 

‣ We can assemble a list of common hardware(+tools) 

- Software Stack 

‣ With all ML algorithms aim for a set of core software tools 

‣ Need for good tools to validate and deploy algorithms 

- ML Problems 

‣ Across the domains similar ML problems exist  

‣ Highlighting the similarity is critical 
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Why are we here?
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Why are we here?

We want to
 write

 a white paper h
ighlighting 

these iss
ues
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Anatomy of an Algo

Training Tuning/ 
Validation Deployment

Good Data/Simulation  
For training

Augmentations?

Local 
GPU

Local 
GPUs

HPC?  
with what?

Critical software 
tools that 
consolidate info

Software/hardware 
deployment 
infrastructure
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N
ow

DUNE timeline and  
various astro timelines 
(Rubin/LSST) 
Should also figure in our 
overall schedule

R&D+ 
Deployment Our stuff 

Likely  
essential

Our stuff 
Likely  
essential



• Within the FastML Community there is a broad range 

- We often try to characterize this range by customization 

- Low Latency and Low Power need more customization 
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What computes are here?

This is our focus here  
We want to 
understand the high 
throughput 
component



• All of us in the room require at least one thing in common 

- Computers  

- Also, with GPUs/Coprocessors to accelerate things 

• As part of this workshop we would like to create a graphic 

- This graph illustrates the computing demands 

- We hope this graphic can be used as a motivator 

• The A3D3 graphic has gotten a lot of traction  

- Highlighting the specific challenges for this conference helps  

- Would like to share this with HPCs as a motivator
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Visualizing Computing



• This work is not at the cutting edge of latency  

- But speed and overall processing time is important 

• We are typically concerned about throughput
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A First Idea
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A First Idea
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GW

10k1k 100k

• LIGO basic specs: 100k channels at 16000 Hz 

- Data Rate is 6.4 GB/s 

- Aiming for a 16000 inferences/s  

- Latency of one sedond 



• LHC High Level Trigger :  

- Data Rate is 1.2 TB/s 

- Aiming for a 100000 events per second  

- Latency of one second 
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A First Idea
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• There is an opportunity to standardize software infrastructure 

- A computing need that is common amongst domains 

‣ Astro: Event brokering 

‣ LIGO : Low latency alerts 

‣ Neutrino/LHC : Data Reconstruction 

- Some domains require different computing to others 

• There is also a need for common ML problems and strategies  

- Deployment of effective deep learning problems  

- Anomaly detection  

- Data Augmentation/Generation for effective learning

23Standardization of 
Software



• Last part of the document, we would like to highlight ML 

- Classifying the style of problems helps alignment 

‣ Supervised learning & its challenges 

‣ Data Generation/augmentation with ML  

‣ Anomaly detection   

‣ Semi-supervision 

• For these range of models we would like to highlight a few 

- Ultimately, we would like to elevate to an ML challenge
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Getting the right models



• Through the HDR community  

- We are working to organize a set of ML Challenges 

- Aiming to align this work with two other communities 

-  MLCommons scientific (through ML tiny) 

- FAIRUniverse grant aimed at supporting  

• Annual Bootcamp at UW to award results & have a tutorial
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ML Challenges

ML Challenges
Assemble a list  
from a few 
domains

White Paper
Really some 
reasonable 
source 
explaning

Construction

Construct the  
FAIR dataset 
test this guy

FAIRUniverse

Scheme to 
deploy models 
& challenges



26FAIRUniverse has 
established Infrastructure

https://docs.google.com/presentation/d/
1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing 

https://docs.google.com/presentation/d/1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing
https://docs.google.com/presentation/d/1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing
https://docs.google.com/presentation/d/1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing
https://docs.google.com/presentation/d/1hqnlvmMgPgVfm7GzDjb6vJfgafl3PRInd9SX1H0GoFA/edit?usp=sharing


• There is one underway Icecube Kaggle Challenge 

• Dylan’s talk from FastML lists some HEP benchmark motivations 

- LHC tracking as a new benchmark 

- LIGO DeepClean as another benchmark 

• More complicated challenges 

- Can we make a data generation challenge, or scheduling
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Idea for ML Challenges

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://indico.cern.ch/event/1156222/contributions/5062814/
https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice
https://indico.cern.ch/event/1156222/contributions/5062814/


• The best way for us to collaborate across domains 

- Making easy-to-use curated datasets or ML problems 

- We have the people in house to really test these datasets 

• This is also a way to tie the different domains together 

- We can use this white paper to start testing out our challenges 

‣ Preparation of datsets  

‣ Release of models  

• Can we get a dataset/model from each scientific domain 

- Also do we have the right benchmarks to do this? 
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A Point to Highlight



• This white paper can help us to assemble some models 

- We would like to assemble a few pages on these  

‣ Illustration of the problem (paragraph) 

‣ Illustration of the dataset preparation 

‣ Impact on the field 
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Roadmaps

White Paper Writing



• Welcome! Enjoy your time here in Cambridge 

- We would like to write a white paper  

- We have some discussion time at the end of the conference 

• Outline for the White paper (Lets keep it short!) 

- Discussion of computing tools and software  

‣ Path to aligning these across domains  

- List of critical models in the field  

‣ What makes these models  

- One plot to rule them all and bind these sections  

• A roadmap for future computing can helps us move this forward
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Conclusions



• https://www.overleaf.com/3629142192jgpsrnqvzccd 

31

White Paper

https://www.overleaf.com/3629142192jgpsrnqvzccd
https://www.overleaf.com/3629142192jgpsrnqvzccd


Backup
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Possible Idea
Neural Benchmarks

Public Challenge

MMA Bencharks

Public Challenge

HEP Bencharks

Public Challenge

A3D3 Internal Challenge

Public Challenge

Have enough people in our 
institute to build a pipelineTo go from internal to public 

We should seek Corporate 
Sponsors

A3D3



• Alert brokering and Image processing 

• ML Problems  

• Anomaly detection  

• Data Augmentation Generation

34Standardization of 
Software


