Inference-as-a-Service In
Gravitational Wave Physics

Alec Gunny'*, Ethan Marx', William Benoit?, Saleem
Muhammed?, Ryan Raikman', Deep Chatterjee’, Eric Moreno’,
Dylan Rankin', Michael Coughlin?, Philip Harris', Erik

Katsavounidis'

X l- :‘ - t ~ l.:‘ﬁ ’.' >
= f6 gn r‘ :
» ot .- s
Gt’awtahonal-.\NaveS
_' P .::.‘ . f:: : ... ! .g. 3 :-,._r ':-;;‘T._r
’ ST A st

Large scale astrophysm:al even’;s f Cherstions

the fabric of spacetime Al

e
v.f" = &
R el

' - ,- ‘,‘ > &

T
| LIGO Hanford Data Predicted

: .detect Iocate and chara iz 2 o
-vie g5 ik '{‘3";»_',. =
n.,. '- i . -.."f‘

Measure t|meserré$ of L
“grawtatlonal Wavé-str

Strain (10%")

) ! . d . l '
: - /’ ’ ':. -~ g .
- ‘-. . - -’ y
e AL . - 4 g
o = ’ Ve 1 S o
i A N M ’ =
o KA B e S £
-f’. P "-‘. . AR o 5:1-0
- et > e :: 49 | uco lemgston Daxa
:? \ ‘:0.' : g . ' 030 035 0.40 0.45
-,. oo - Time (sec)
h'ttps /7WW Ilgd palteoh edu/fmqge/llgoz& ps://www.ligo.caltech.edu/image;

¥ d
-5 A 4 a8

Masses in the Stellar Graveyard

Detecting a Gravitational Wave

Gravitational-wave Detector Data
Continuous time series (1Hz, 128Hz ... 16kHz)

Characterize and remove Noise in - cpaviaton wave chamne:

~20GB/day (per instrument)

the gravitational wave strain R —

Monitors (seismometers,

Chan nel accelerometers,
magnetometers, microphones
etc)

[ITH |m|\

i

A

G Signal |

Internal Engineering Monitors
(sensing, housekeeping,
status etc)

Together with various Initial and Enhanced LIGO
intermediate data products archive (2002-2010)
>2TB/day (per instrument) exceeds 1PB of data

LIGO Hanford Data Predicted

1.0

05|
0.0 W' !
05} v

1.0

Strain (10?")

Characterize it:

10
05|
0.0 LM WA 1\, ‘
s C N
a0l |

Where in the sky?

Strain (10?")
p:
T S

| LIGO Haniord Data (shift

VT

LIGO Livingston Data

How big?

Strain (10?")
- =]
>

.
030 035 0.0 (X5
Time (sec)

Detect an event

ers in GW Physics ML Applications in Production

Gravitational ¥ s Data Analysis | Machine Leaming

3. Improving Data Quality

Machine lear
datazets. They have been apphed in G

o (2013) ** (CQQY; Biswas et al. (2013) ' (PRD)]
For example, Gstahi0Q [Vaulin etal. (2013) “(a
[Biswas et al. (2013) ' (PRD)| reported

% a1 the time of the event

of gnches [Essick et
n [Baker et al. (2015) ** (PRON
on [Essick etal. (2013) * (0QG)| and

hes in witness

e

Glitch Classification

ber of ider

ers2anding how sear

%y [Davis et ak. (2020) (CG)]

15) * (CQO)] test on simulated d

gitches. The of whitened ¢
e on [Powell (2017) * (PAD Thesis); Cuoco (2018) ** (Workshop)]

e NOT FOUND

& {Powell etal (2017) ** (CQG)] te
A

din 3 matrix D o

2]

hes are stor

performed. See m

gonal ear transécemation I

d varisbles, caed P

*not entirely true

SR SR
Wf@ hv2 2y
Kernel fength 1 1

Requires high-throughput, low(-ish)-latency inference
on heavily overlapping data

On-the-fly re-training and updating of model weights to
reflect non-stationary noise

e T
e el

Mwwd..kuwm
MWM pobinttrgolbttitgon

bninrerlloo sllhetpdon

WMJ»M».M«» ‘

Need predictions on O(10)-O(1000)yrs of
background and simulated events to estimate 5

detection significance and false alarm rates

Deployment - Naive Example

import torch
from deepclean.architectures import DeepCleanAE as DeepClean

num_witnesses = 21

weights_path = "/path/to/weights.pt”

nn = DeepClean(num_witnesses).to(“cuda”)
nn.load_state_dict(torch.load(weights_path))

dataset = ...

for X, y in dataset:
y_hat = nn(X)
do_some_physics(y, y_hat)

Deployment - Naive Example

import torch

DL software stack often unwieldy
Lots of options - do we need to become experts in all
of them?

1_\'”52@?— I Shs
+
S Caffe?

ONNX™

Deployment - Naive Example

from deepclean.architectures import DeepCleanAE as DeepClean

weights_path = "/path/to/weights.pt”

e Access to the model definition and weights
o Do they match?
o Do they represent the most up-to-date work?

Deployment - Naive Example

nn = DeepClean(num_witnesses).to(“cuda”)

e Accessing, using, and saturating the compute
capacity of accelerators is non-trivial

Deployment - Naive Example

Just a single function call!
y_hat = nn(X)

10

Deployment - Naive Example

This is where you should be spending your energy!

do_some_physics(y, y_hat)

11

Inference-as-a-Service (laaS)

Client applications
leverage
standardize APIs
that abstract the
details of the
hardware, software,
or even particular
ops used to
perform inference

»

<=

Cloud or
local model
repository

Containerized
inference service

gRPC inference
requests

Inference is handled by

- blackbox application to which

users send requests

Models are hosted and

‘ versioned in a central model

repository from which all
deployments read

12

Off-the-shelf solution: Triton Inference Server

e |aaS application built by NVIDIA
o Parallel and ensemble scheduling
o Support for heterogeneous
hardware and software
environments
o Non-interrupting model updates
o Metrics endpoint for monitoring
throughput and latency
e Drawbacks
o Lots of boilerplate
o Non-pythonic protobufs

13

laaS challenges for streaming timeseries data

Traditional laaS

Overlapping input/output windows lead
to redundant data transfer

P d mwt.vﬁ
R VT,

Predicted timeseries . + m

Snapshot length

14

hermes - |aaS deployment utilities

Traditional laaS
F Timeseries from channel 1 l
3 Timeseries from channel 2 l
‘ " ... Timeseries from channel k I

Y A Predicted timeseries . i S ﬁ
~ A - .
1

~
Snapshot length [

Snapshotter model on inference
service maintains most recent Client only needs to

With hermes input to model as a state send updates to this state

0 Backend online averaging model 1
m m maintains average as state, m v
0 0 streams back updates after o 2 y
W M overlapping predictions are made W .
S 3 v + |

https://github.com/ml4gw/hermes

15

https://github.com/ml4gw/hermes

hermes - |aaS deployment utilities

from hermes.aeriel.client import InferenceClient
fFrom hermes.aeriel.serve import serve

def callback(response, request_id, sequence_id):
return do_some_physics(response) €

batch_size - 16
step_size - batch_size * (SAMPLE_RATE // r)
with serve("/path/to/model-repo”, gpus=[0, 1, 2, 3]) as instance:
data - load_data_in_parallel()
instance.wait()
client InferenceClient(
"localhost:8001", "my-nn-stream”, callback=callback

with client:
start, stop = 0, step_size
while stop < len(data):
update = data[start: stop]

client.infer(update, sequence_id-1001, sequence_start-start --

start, stop = start + step_size, stop + step_size

0)

From hermes import quiver as qv

tf also supported
my_nn = torch.nn.Sequential(...)
my_nn.load(torch.load_state_dict("/path/to/weights.pt"))

repo = qv.ModelRepository("/path/to/repos”)
model - repo.add("my-nn", platform-qu.Platform.ONNX)

tensorflow export infers shapes/names from graph
model.export_version(
my_nn, input_shapes={"h_of t": [...]}, output_names-["det_stat"]

model.versions == [1]

subsequent export calls infer shapes/names from config
model.export_version(my_nn)
model..versions == [1, 2]

built-in support for streaming-inference
ensenble - repo.add("my-nn-strean”, platform-qv.Platform.ENSEMBLE)
ensemble.add_streaming_inputs(

model.inputs[“h_of_t"]

stream_size=SAMPLE_RATE // r,

batch_size-16
)
ensemble.add_output(model.outputs["det_stat"])
ensemble.export_version(None)

Singularity container

running Triton
) LJ
UJ (J

s

1000

Throughput (seconds of data / s)

1500

e Infers information from model
graph/config to reduce boilerplate

e Dependencies kept separate to make
deployments modular and lightweight

e Built-in support for TensorRT
conversion with mixed-precision

e Full (WIP) example:
https://alecqunny.github.io/hermes-examples

[Vanilla Implementation

[12as, ONNX backend

[1aas, TensorRT FP16 backend
[l 12as, TensorRT w/ 2xGPU

Batch size 16 1 6

Batch size 1 Batch size 4

https://alecgunny.github.io/hermes-examples

True laaS - extend to
large-scale
deployment scenarios
across heterogeneous
computing

environments

Thank you!

