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Masses in the Stellar Graveyard

Detecting a Gravitational Wave

Gravitational-wave Detector Data
Continuous time series (1Hz, 128Hz ... 16kHz)

Characterize and remove Noise in - cpaviaton wave chamne:

~20GB/day (per instrument)

the gravitational wave strain R —

Monitors (seismometers,

Chan nel accelerometers,
magnetometers, microphones
etc)
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Internal Engineering Monitors
(sensing, housekeeping,
status etc)

Together with various Initial and Enhanced LIGO
intermediate data products archive (2002-2010)
>2TB/day (per instrument) exceeds 1PB of data
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Requires high-throughput, low(-ish)-latency inference
on heavily overlapping data

On-the-fly re-training and updating of model weights to
reflect non-stationary noise
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Need predictions on O(10)-O(1000)yrs of
background and simulated events to estimate 5

detection significance and false alarm rates



Deployment - Naive Example

import torch
from deepclean.architectures import DeepCleanAE as DeepClean

num_witnesses = 21

weights_path = "/path/to/weights.pt”

nn = DeepClean(num_witnesses).to(“cuda”)
nn.load_state_dict(torch.load(weights_path))

dataset = ...

for X, y in dataset:
y_hat = nn(X)
do_some_physics(y, y_hat)



Deployment - Naive Example

import torch

DL software stack often unwieldy
Lots of options - do we need to become experts in all
of them?
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Deployment - Naive Example

from deepclean.architectures import DeepCleanAE as DeepClean

weights_path = "/path/to/weights.pt”

e Access to the model definition and weights
o Do they match?
o Do they represent the most up-to-date work?



Deployment - Naive Example

nn = DeepClean(num_witnesses).to(“cuda”)

e Accessing, using, and saturating the compute
capacity of accelerators is non-trivial



Deployment - Naive Example

Just a single function call!
y_hat = nn(X)
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Deployment - Naive Example

This is where you should be spending your energy!

do_some_physics(y, y_hat)
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Inference-as-a-Service (laaS)

Client applications
leverage
standardize APIs
that abstract the
details of the
hardware, software,
or even particular
ops used to
perform inference

»

<=

Cloud or
local model
repository

Containerized
inference service

gRPC inference
requests

Inference is handled by

- blackbox application to which

users send requests

Models are hosted and

‘ versioned in a central model

repository from which all
deployments read
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Off-the-shelf solution: Triton Inference Server

e |aaS application built by NVIDIA
o Parallel and ensemble scheduling
o  Support for heterogeneous
hardware and software
environments
o  Non-interrupting model updates
o  Metrics endpoint for monitoring
throughput and latency
e Drawbacks
o Lots of boilerplate
o  Non-pythonic protobufs
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laaS challenges for streaming timeseries data

Traditional laaS

Overlapping input/output windows lead
to redundant data transfer
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hermes - |aaS deployment utilities

Traditional laaS
F Timeseries from channel 1 l
3 Timeseries from channel 2 l
‘ " ... Timeseries from channel k I

Y A Predicted timeseries . i S ﬁ
~ A - .
1

~
Snapshot length [

Snapshotter model on inference
service maintains most recent  Client only needs to

With hermes input to model as a state send updates to this state

0 Backend online averaging model 1
m m maintains average as state, m v
0 0 streams back updates after o 2 y
W M overlapping predictions are made W .
S 3 v + |

https://github.com/ml4gw/hermes
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https://github.com/ml4gw/hermes

hermes - |aaS deployment utilities

from hermes.aeriel.client import InferenceClient
fFrom hermes.aeriel.serve import serve

def callback(response, request_id, sequence_id):
return do_some_physics(response) €

batch_size - 16
step_size - batch_size * (SAMPLE_RATE // r)
with serve("/path/to/model-repo”, gpus=[0, 1, 2, 3]) as instance:
data - load_data_in_parallel()
instance.wait()
client InferenceClient(
"localhost:8001", "my-nn-stream”, callback=callback

with client:
start, stop = 0, step_size
while stop < len(data):
update = data[start: stop]

client.infer(update, sequence_id-1001, sequence_start-start --

start, stop = start + step_size, stop + step_size

0)

From hermes import quiver as qv

# tf also supported
my_nn = torch.nn.Sequential(...)
my_nn.load(torch.load_state_dict("/path/to/weights.pt"))

repo = qv.ModelRepository("/path/to/repos”)
model - repo.add("my-nn", platform-qu.Platform.ONNX)

# tensorflow export infers shapes/names from graph
model.export_version(
my_nn, input_shapes={"h_of t": [...]}, output_names-["det_stat"]

# model.versions == [1]

# subsequent export calls infer shapes/names from config
model.export_version(my_nn)
# model..versions == [1, 2]

# built-in support for streaming-inference
ensenble - repo.add("my-nn-strean”, platform-qv.Platform.ENSEMBLE)
ensemble.add_streaming_inputs(

model.inputs[“h_of_t"]

stream_size=SAMPLE_RATE // r,

batch_size-16
)
ensemble.add_output(model.outputs["det_stat"])
ensemble.export_version(None)

Singularity container

running Triton
) LJ
UJ (J

s

1000

Throughput (seconds of data / s)

1500

e Infers information from model
graph/config to reduce boilerplate

e Dependencies kept separate to make
deployments modular and lightweight

e Built-in support for TensorRT
conversion with mixed-precision

e Full (WIP) example:
https://alecqunny.github.io/hermes-examples

[ Vanilla Implementation

[ 12as, ONNX backend

[ 1aas, TensorRT FP16 backend
[l 12as, TensorRT w/ 2xGPU

Batch size 16 1 6

Batch size 1 Batch size 4


https://alecgunny.github.io/hermes-examples

True laaS - extend to
large-scale
deployment scenarios
across heterogeneous
computing

environments




Thank you!



