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Background

e Compact binary coalescences (CBCs) Livingston Hanford
involve binary systems with black holes
and/or neutron stars that spiral into a
merger and emit gravitational waves

e Gravitational waves (GWs) are detected
using the LIGO and Virgo detectors

e Current search techniques involve
matched filtering to identify signals ' ' ! ' -
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Motivation

* For large parameter spaces, search pipelines require a significant
number of templates which adds latency to post-processing

e Significant computational cost
e Efforts being made to improve latency, but there is a limit

e Detecting events rapidly after merger, or pre-merger, can lead to
multi-messenger astronomy to study these mergers

e Detector data is non-stationary, so the standard matched filtering is
not optimal



Our Approach

 Signal length increases for lower
mass binaries
 Difficult to design models searching
for signals with varying durations

 We use SNR time-series from
matched filtering as our networks

input
* Proof of concept using Gaussian
generated noise

e Use a combination of CNN, ResNet
and LSTM layers
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Binary Black Hole (BBH) Detection

* Train on a small set of template banks
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e Sample lengths of 1s

* SNR range € [5, 50]
e Biased to lower SNRs

e Component Masses € [10,80]
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BBH Detection - Testing

 Remove final softmax layer from

our model to unbound the ranking
statistic
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Binary Neutron Star (BNS) Detection

* We have begun similar work for BNS

detection using the SNR time series 1
input -
* SNR time series response is %06
dependent on signal chirp mass, so =
we include the template chirp mass 7“”‘ -~ Matehed fitering
as an input | et — e
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Pre-merger BNS Detection

* Feasible to conduct pre-merger
detection as total signal strength is
combined into a smaller window in 20l
the SNR time-series

e Goal is to confidently detect events &
prior to merger so they can be

observed with EM telescopes T
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Challenges

* SNR time series data scales the disk usage linearly with the number of
templates we train/test with

e Cannot all be stored in memory for training

* Inference over many years of data to validate our model requires
improved infrastructure

e Limitations when using real data in sample generation



Future Work

* Expand detection to multiple detectors
e Improve data loading/generation infrastructure

* Pre-merger detection

e Implementation offline/online during detector operating runs
e |ntegration into the SPIIR pipeline



Summary

 Machine learning can be used to accelerate the detection of GWs
from compact binary coalescences

* We have shown that using the SNR time series from matched filtering
is a valid approach

e Can match the results of matched filtering search with stationary
Gaussian background (where matched filtering is considered optimal)

* We plan to expand this work with real noise, multiple detectors, pre-
merger detection, and eventually into online use
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