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Background

e LIGO is preparing for its upcoming 4th observing run
e Expect to detect ~1 CBC event per day

e Fast identification of sources important for informing EM follow up



Motivation: Benefits of ML

Online: Decreased inference latency for electromagnetic follow-up

Offline: Smaller computational footprint, larger throughput

Both: Template bank scalability, Increased Sensitivity?
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https://github.com/ml4gw/BBhnet

ml4gw: Data Processing on GPU

Randornly shce kernels from from mldgw.utils.slicing import slice kernels
background strain data

Waveform projection at training from ml4gw.transforms.injection import RandomWaveformInjection
time

Whltenlng filter from ml4gw.transforms.whitening import Whitening



https://github.com/ml4gw/ml4gw

Oversampling Glitches

Hanford
25
1024
20
512
~ 55
T =1
— 256 15 g
> [}
(9} kel
GC) 128 E
=2 ©
o 10 £
g 2
2 5
. -
0
-0.25 -0.125 0.0 0.125 0.25
Time (s)

Example Blip glitch in Hanford
data

Frequency [Hz

1000

100

10
—-2.0

-1.5

-1.0 -0.5 0.0 0.5 1.0 1.5

Time [secs]

Example binary black hole
merger

2.0

wn

Normalized energy



Oversampling Glitches

Utilize Omicron algorithm to
identify “triggers” of excess
power

Create dataset of glitch events
from these triggers
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Dataloader

Dataloader Parameters

batch size: 10
glitch fraction: 0.3
waveform fraction: 0.5
background fraction: 0.2
kernel length: 1 second

Load strain
data into
memory

———» /Background

Kernels sampled
independentl
from each IF

batch_size *
glitch_frac
kernels used for
inserting glitches

Glitches inserted into (1 ... N)
IFOs.

insert IFO; glitch—p ﬂ
insert coinc glitch—p @
insert IFOy glitch—p

" g Ej

Glitches

B

e

+ + + o+

HEHEH
%%%%%

+

kernels. Coalescence
time lies anywhere
in kernel

Waveforms added
into background ﬂ,‘%
1l

Load signal
h+ and hx
into memory Waveforms
projected
onto IFOs
Intrinsic ro;ectxon
Waveforms Sample - Sample
waveform_frac * waveform_frac * batch_size

batch_size waveforms

extrinsic parameters

~
Labeled
> as
noise
/
\
Labeled
> as
signal
/

Extrinsic
Prior




Model Evaluation

Model performance on signals evaluated
through injections into background strain

False alarm rates of these signals estimated by
analyzing many background timeslides

Leverage triton inference server and hermes
library to accelerate inference



https://github.com/ML4GW/hermes
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https://app.hex.tech/alecgunny/app/689daae6-cef4-4fae-87b7-57ea9490972a/latest
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Performance Metrics
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Next Steps

e Scaling up
o Training Dataset: glitches, signals
o Timeslide data analyzed — More significant detections
o Larger Models
e Retraining schemes
o How do we know when our model is stale?

o How often do we have to retrain?



Backup Slides



Analyzing Network Outputs
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