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DENOISING GOALS

* The output reconstructed from an interferometer contains

h(t) = s(t) + n(z)

/N

Possible GW signal Detector noise

* Objective: To recover s(¢) with best possible signal-to-noise ratio by minimising the
noise n(f)

* Scientific objectives:
* Signals that are below the noise (un-detectable) becomes detectable

* Improved SNR improves parameter estimations



NOISE

REMOVABLE AND NON-REMOVABLE

S

n(t) =n, (1) +n, (1)

* Non-removable (fundamental
noise)

* Budgeted by system design

* Eg: photon shot noise, thermal
noise

* Can be reduced only with
upgraded design and technology

* Source of noise witnessed by
dedicated system monitors
(witness sensors)

* Environmental contamination
or technical noise eg: noise
arising from the control of
suspended optics



VWITNESSED NOIS

* witness sensors or channels - the timeseries denoted by {w,(?)}

e The noise n,(f) is the collective contribution from {w(?)}
* Schematically, nw(t) =9 ({Wl(t) })

where I is some activation function representing non-linear or
non-stationary coupling of the output of witness channels to the

strain channel.
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where J is some appropriate loss function

Ormiston et al (2020)

0 = m_ip [J (h(t), 9?({Wl(t)}aﬁ))]



| OSS FUNCTION N TerMs OF
AMPLITUDE SPECTRAL DENSITY (ASD)

B 1 Jmax [ § Af) S® e Minimises the ASD ratio
Jasa = Fonax = Foin 37\ Su(F) 4 = Z (z) averaged over all the bins in

the desired frequency range.

Original strain
amplitude 1/,

e Ratio of residual ASD to the
original ASD

Residual strain

amplitude \/E

* Involves FFT — the
minimum length of the
time-domain data dictated
by the resolution of the
features we are looking for.

Amplitude spectral density [Hz~!/?]

Frequency (Hz) 6
Ormiston et al (2020)



THE ARCHITECTURE AN
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DEEPCLEAN VALIDATION TESTS WITH
MOCK DATA

* Twenty days of LIGO data from O3 (between 9/1/2019 -
9/20/2019)

* Injected compact binary coalescence signals (BBH/BNS/NSBH)
 Drawn from O3-inferred astrophysical population models

« 25000 injections in total, we analyse 266 BBH injections that have
coalescence frequency between 55-70 Hz ()

* Following analysis performed on the original and cleaned data
 Parameter estimation of the injections

» Sensitive volume (<VT>) estimation

 Match filter SNR of the injections 9



PE VALIDATION: EXAMPLE FROM A

SINGLE INJ

- original
- deepclean
— deepclean train on i

dL[Mpc]

s,
%

nj

~CTION

* With 60 Hz subtraction, PE
improvements are not
prominent. This is expected as
the signal spends a small fraction

of time in the frequency band of
60 Hz noise

 Can we train on data that has
GW signals in it!

* Yes, they don'’t affect the
noise prediction.



PE VALIDATION: P-P PLOTS OF ALL TH
RAMETERS

P-P plot shows that deepClean does introduce bias into the PE
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DETECTION IMPROVEMENTS

e Results awaited

e GstLAL: Computes the sensitive volume improvements (how
many new detections to expect due to denoising)

* Improvements in the matched filter SNR



HOW OFTEN TO TRAIN D
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* Once over a few days is found to be enough in O3 data.

e This might change in O4 or for a different noise coupling



ONGOING AND FUTUR

KAGRA implementation (Chia-Jui’s talk up next)

Online DeepClean on LIGO data

- WORKS

e Feasibility study done (DeepClean can be performed on frames of | s
duration and the cleaned frames can be produced in ~| s latency)

e Deployment with HERMES taking place (lead by Alec Gunny)

Low frequency (10-30 Hz) broadband noise subtraction

LIGO internal review to start soon (to be ready for O4)
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~CTURE WITH AN

- XAMPL

Fully convolutional auto-encoder
mapping the witness channel

data {w,(?)} into the noise
prediction n,, (1)

Input: 8 s time-series from 21
witness channels sampled at
1024 Hz

Output: Noise prediction for 8s
sampled at 1024 Hz
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ONLINE DEEPCLEAN

 Aim is to subtract every 1 s frame as soon as they are available

* 1 s cleaned data are noisy at the edges

 Reason: a combination of the architecture, training and post-
processing (the major part).

 Consider 4 s data for cleaning and take 1 s from somewhere in
the middle excluding the edges.

e Causes additional latency

Will be discussed in other talks .



SLIDING WINDOWS:
SUPPRESSING THE EDGE EFFECTS

Difference in the normalized
predictions (online - offline)
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* Take unaffected |s from the 4s cleaned segment and run cleaning
on overlapping windows



ONLINE DEEPCLEAN:
L ATENCY VS SUBTRACTION QUALITY
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* Longer the excluded edge, better the quality of the subtraction
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ONLINE DEEPCLEAN: LATENCY VS
IMPROVEMENTIN ASD RATIO
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A TYPICAL OFFLINE DEEPCLEAN
ANALYSIS

* Training:
e About 1000 s of data used to train

e Sent to the CNN in batches of segments and the ASD computed by averaging over all
segments.

* Length of the segment determined by the desired resolution (for 1/4 Hz resolution, the
segments should be at least 4 s longer)

e |nference:

* No restrictions in particular on the length of the data cleaned

* (Too shorter segments (< 10 s) not recommended, due to some edge effects)
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OFFLINE DEEPCLEAN: SPECIFICATIONS

* Network trained with 2000 s (or 4000 s) data from around (up to a few days
before or after) the target segment.

e Target segment is chosen to be 4096 s
e Batch: 32 overlapping kernels, with each kernel being 22 x 32768 matrices

* Assuming there are 22 channels (for 60 Hz subtraction)
and one kernel is 8 s and data is sampled at 4096 Hz

e Batch size of |16 and kernels of 4s or 2s have been found to be equally
effective in cleaning, however for training, the kernels need to be at least
8 s long as the loss function is PSD-based

(a mean PSD with 4 FFTs and |/2 Hz resolution needs 8s data)
26



VWITNESS CHANNELS USED
SUBTRACTION
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TRAINING DEEPCLEAN

Preprocess: normalize (zero mean and unit variance) and
bandpass to the desired frequency band.

Data sent to the network in mini-batches with one batch
typically having 32 samples

Loss function computed for the network prediction by
averaging over the mini-batch.

Loss is minimized using ADAM (the Gradient Descent
algorithm) using both Forward pass and backward pass
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