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DENOISING GOALS

• The output reconstructed from an interferometer contains 
     

                                  
 
 
 

• Objective: To recover  with best possible signal-to-noise ratio by minimising the 
noise 

• Scientific objectives: 

• Signals that are below the noise (un-detectable) becomes detectable

• Improved SNR improves parameter estimations

h(t) = s(t) + n(t)

s(t)
n(t)
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Possible GW signal Detector noise



REMOVABLE AND NON-REMOVABLE 
NOISES

                          

•Non-removable (fundamental 
noise)

•Budgeted by system design

•Eg: photon shot noise, thermal 
noise

•Can be reduced only with  
upgraded design and technology 
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n(t) = nnw(t) + nw(t)
                          

• Source of noise witnessed by 
dedicated system monitors 
(witness sensors)

• Environmental contamination 
or technical noise eg: noise 
arising from the control of 
suspended optics 
 



WITNESSED NOISE

• witness sensors or channels - the timeseries denoted by { } 

• The noise    is the collective contribution from  { }

• Schematically,                      
 
where  is some activation function representing non-linear or 
non-stationary coupling of the output of witness channels to the 
strain channel. 

wi(t)

nw(t) w(t)

nw(t) = 𝒯 ({wi(t)})
𝒯
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DEEPCLEAN: A NEURAL NETWORK TO 
PREDICT nw(t)

•   trained weights of the neural network 

        

   where  is some appropriate loss function

⃗θ →

⃗θ = min⃗θ′￼
[J (h(t), ℱ({wi(t)}; ⃗θ′￼))]

J
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nw(t) = ℱ({wi}; ⃗θ)

r(t) = h(t) − nw(t)

h(t)

{ }wi(t)
r(t)

Residual strain 

after noise subtraction

Ormiston et al (2020)



LOSS FUNCTION IN TERMS OF  
AMPLITUDE SPECTRAL DENSITY (ASD)
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• Minimises the ASD ratio 
averaged over all the bins in 
the desired frequency range. 

• Ratio of residual ASD to the 
original ASD

• Involves FFT  the 
minimum length of the 
time-domain data dictated 
by the resolution of the 
features  we are looking for.

→

Jasd =
1

fmax − fmin ∫
fmax

fmin

Sr( f )
Sh( f )

df =
1
N

N

∑
i=1

S(i)
r

S(i)
h
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Ormiston et al (2020)



THE ARCHITECTURE AND THE WORKFLOW
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Fully convolutional auto-
encoder mapping the 
witness channel data 

 into the noise 
prediction 

{wi(t)}
nw(t)



EXAMPLE: SUBTRACTION OF 60 HZ 
POWER-LINE AND THE SIDEBANDS
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Ormiston et al (2020)

side bands due to coupling 
with other technical noise 



DEEPCLEAN VALIDATION TESTS WITH 
MOCK DATA 
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• Twenty days of LIGO data from O3 (between 9/1/2019 - 
9/20/2019) 


• Injected compact binary coalescence signals (BBH/BNS/NSBH) 

• Drawn from O3-inferred astrophysical population models


• 25000 injections in total, we analyse 266 BBH injections that have 
coalescence frequency between 55-70 Hz ()


• Following analysis performed on the original and cleaned data

• Parameter estimation of the injections

• Sensitive volume (<VT>) estimation

• Match filter SNR of the injections



PE VALIDATION: EXAMPLE FROM A 
SINGLE INJECTION
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• With 60 Hz subtraction, PE 
improvements are not 
prominent. This is expected as 
the signal spends a small fraction 
of time in the frequency band of 
60 Hz noise

• Can we train on data that has 
GW signals in it?

• Yes, they don’t affect the 
noise prediction.



PE VALIDATION: P-P PLOTS OF ALL THE 
PARAMETERS
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P-P plot shows that deepClean does introduce bias into the PE 



DETECTION IMPROVEMENTS

• Results awaited

• GstLAL: Computes the sensitive volume improvements (how 
many new detections to expect due to denoising)

• Improvements in the matched filter SNR 

12



HOW OFTEN TO TRAIN DEEPCLEAN

• Once over a few days is found to be enough in O3 data. 

• This might change in O4 or for a different noise coupling
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ONGOING AND FUTURE WORKS

• KAGRA implementation (Chia-Jui’s talk up next)

• Online DeepClean on LIGO data

• Feasibility study done (DeepClean can be performed on frames of 1 s 
duration and the cleaned frames can be produced in ~1 s latency)

• Deployment with HERMES taking place (lead by Alec Gunny)

• Low frequency (10-30 Hz) broadband noise subtraction

• LIGO internal review to start soon (to be ready for O4)
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ADDITIONAL SLIDES

15
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Fully convolutional auto-encoder 
mapping the witness channel 
data  into the noise 

prediction 


Input: 8 s time-series from 21 
witness channels sampled at 

1024 Hz


Output: Noise prediction for 8s 
sampled at 1024 Hz 

{wi(t)}
nw(t)

Ormiston et al (2020)

ARCHITECTURE WITH AN EXAMPLE



ONLINE DEEPCLEAN
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ONLINE DEEPCLEAN

• Aim is to subtract every 1 s frame as soon as they are available

• 1 s cleaned data are noisy at the edges

• Reason: a combination of the architecture, training and post-

processing (the major part). 

• Consider 4 s data for cleaning and take 1 s from somewhere in 

the middle excluding the edges. 

• Causes additional latency

18Will be discussed in other talks 



SLIDING WINDOWS: 
SUPPRESSING THE EDGE EFFECTS

• Take unaffected 1s from the 4s cleaned segment and run cleaning 
on overlapping windows
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ONLINE DEEPCLEAN:
LATENCY VS SUBTRACTION QUALITY

• Longer the excluded edge, better the quality of the subtraction
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Gunny et al (2022)



ONLINE DEEPCLEAN: LATENCY VS 
IMPROVEMENTIN ASD RATIO
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COHERENCE BETWEEN THE STRAIN 
AND POWER-LINE WITNESS
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DEEPCLEAN: FULL WORKFLOW
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Ormiston et al (2020)



SUBTRACTION OF LOW-FREQUENCY 
BROADBAND NOISE (10-30 HZ)
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A TYPICAL OFFLINE DEEPCLEAN 
ANALYSIS 

• Training:

• About 1000 s of data used to train 

• Sent to the CNN in batches of segments and the ASD computed by averaging over all 
segments. 

• Length of the segment determined by the desired resolution (for 1/4 Hz resolution, the 
segments should be at least 4 s longer)

• Inference:

•  No restrictions in particular on the length of the data cleaned 

• (Too shorter segments (< 10 s) not recommended, due to some edge effects)

•
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OFFLINE DEEPCLEAN: SPECIFICATIONS

• Network trained with 2000 s (or 4000 s) data from around (up to a few days 
before or after) the target segment.

• Target segment is chosen to be 4096 s

• Batch: 32 overlapping kernels, with each kernel being 22 x 32768 matrices   

• Assuming there are 22 channels (for 60 Hz subtraction) 
and one kernel is 8 s and data is sampled at 4096 Hz

• Batch size of 16 and kernels of 4s or 2s have been found to be equally 
effective in cleaning, however for training, the kernels need to be at least 
8 s long as the loss function is PSD-based   
(a mean PSD with 4 FFTs and 1/2 Hz resolution needs 8s data)
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WITNESS CHANNELS USED IN 60 HZ 
SUBTRACTION
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H1:GDS-CALIB_STRAIN

H1:PEM-CS_MAINSMON_EBAY_1_DQ

H1:ASC-INP1_P_INMON

H1:ASC-INP1_Y_INMON

H1:ASC-MICH_P_INMON

H1:ASC-MICH_Y_INMON

H1:ASC-PRC1_P_INMON

H1:ASC-PRC1_Y_INMON

H1:ASC-PRC2_P_INMON

H1:ASC-PRC2_Y_INMON

H1:ASC-SRC1_P_INMON

•

H1:ASC-SRC1_Y_INMON

H1:ASC-SRC2_P_INMON

H1:ASC-SRC2_Y_INMON

H1:ASC-DHARD_P_INMON

H1:ASC-DHARD_Y_INMON

H1:ASC-CHARD_P_INMON

H1:ASC-CHARD_Y_INMON

H1:ASC-DSOFT_P_INMON

H1:ASC-DSOFT_Y_INMON

H1:ASC-CSOFT_P_INMON

H1:ASC-CSOFT_Y_INMON



PE IMPROVEMENTS: RATIO OF ERROR 
BARS

28



TRAINING STRATEGY FOLLOWED FOR 
MDC ANALYSIS
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TRAINING DEEPCLEAN

• Preprocess: normalize (zero mean and unit variance) and 
bandpass to the desired frequency band.

• Data sent to the network in mini-batches with one batch 
typically having 32 samples 

• Loss function computed for the network prediction by 
averaging over the mini-batch.

• Loss is minimized using  ADAM (the Gradient Descent 
algorithm) using both Forward pass and backward pass
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